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Introduction. In general terms, this puper is & sequel to my paper
Adequate subcategories [b]. It develops some notions and results of the
structurc theory of categories, relating adequacy to ideal structure and
completeness; it employs these notions in two theorems characterizing
certain categories of algebras; and it continues the work of [6] on ade-
quacy for some special functors (such as zero functors and their con-
jugates) and special categories (such as categories of vector spaces).

One of the theorems is much better than the others. That is the
characterizetion of quasi-primitive categories of algebras, which is sur-

prisingly simple, has every hypothesis nailed down by a counterexample,
and is largely due to F. W. Lawvere.

THEOLEM. A category composed of some class of algebras of fized type,
olosed under formation of direct products and subalgebras, with all homomor-
phisms hetween these algebras, 18 (up to cocxtension) the same as a complete
category having a projectively finite projective generator.

The language, most of which iz in cwrrent use, will be explained
below.

Thix theoren comes from my theoren: (cominunicated to the 1962
International Congress of Mathematicians) which characterized the same
categories, using roughly three hypotheses too many, and from Lawvere's
theorem [8] characterizing primitive categories of algebras (which are
closed also under formation of homoniorphic images), using roughly one
hypotliesis too many. The final hypotheses are pretty nearly the inter-
section of the two sets, and the construction of a representation by alge-
bras is the sane in all three theorems; beyond this, the final proof is basi-
cally Lawveve’s, proceded by my lemmas justifying the weaker hypothe-
ges, and followed by my arguments establishing a conclusion not men-
tioned in [8]. Ono conld reconvert this proof into w somewhat simpler
proof of w somewhat simpler version of Lawvere’s theorem, adding the
appropriate condition [8] on congruence relations. T do not know whether
the resulling set of conditions is independent.

In the present theorem, “complete” may be taken in the seuse of
Freyd [2], though a stronger sense ix intvoduced in thix paper for other
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applications. A category is right complete, in the weakor scnse, if cvery
family of objects has a free sum and for cvery diagram

there is a mapping h: ¥ — Z such that (1) f = hg and (2) for each
t: Y — T satisfying if =tg, there is exactly one k: Z - 1' such that
{ = kh. (Such an h is called o coequalizer of the pair (f, g) in [8], an
inductive limit of tho diagram in [12], a right root of the diagram in [2].)

Left complete is defined dually, in terms of divect products and equal-
izors. Complete moans right and left complete. However, in the present
theorem the oxistence of direet products follows from the other con-
ditions. There are six indopendent conditions, three already stated (frce
sums, equalizers, coequalizers), three stated below.

By a proper subobject of an object X we mean a monomorphism
m: 8 -~ X which is not an isomorphism. We call an object P projective
if, given any diagramn

X
¥
¥

{
p--- ‘-’ N

in which the mapping f: X — Y does not factor across any proper sub-
object of Y, the mapping ¢: P -~ Y factors (“lifts”) across f. We call
P a generator if for every object X, there is no proper subobject of X across
which all mappings from P to X factor. (These definitions seem quite
natural, though a weaker definition of “generator”, too weak for the
present theorem, is in common uge [3]. Actually we shall use a wider
notion of subobject and a correspondingly weaker definition of “pro-
jeetive™. The corresponding stronger definition of “generator” eoincides
with siriet separator in the sense of Semadeni [10]. If we use it in the
present theorem, the asswnption on equalizers becomes @ conseguence
of the rest. Tlowever, there are still six conditions, for the detinition of
a striet separator amounts to two vonditions.)

Finally, an object P is projectively finite if for every free suin S

= M P, of copies of P, every mapping P — 8 factors across the canoni-
ued
cal injection of some finite snbsnmm N P, (P {inite). This concept is Law-
ael

vere's, but he calls it “abstractly finite™ [8]. The finiteness of such an
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object may be very abstract indeed; in the category of all groups, every
abelian group has this property.

It should be noted that A. I. Malcev has announced(!) a charac-
terization [9] of quasi-primitive categories of algebras considered as
concrete categorics of sets and functions. The problem is not very close-
ly related to thec present one, but Malcev’s work stimulated minc.
I am indebted to J. P. Jans, J. Segal, and E. G. Sulgeifer for some help-
ful comments on some of this material.

1. Ideals. There aro three ways the term “ideal” might be used in
categories. Wo might apply it to objects which are kernels of mappings
in the category (cf. [2], [7]), or to collections of mappings which are ker-
nels of functors, or to classes of mappings which are closed under mul-
tiplication on one or both sides. The term will be used here essentially
in the third way, though the difference kernels of [2] are an impor-
tant special case. The present usage also hag affinitics with the original
notion of an ideal as an “ideal number”; here it i3 an ideal object which
one might adjoin to the category.

There are set-theoretic difficulties of two kinds in this discussion.
(1) We cannot form sets of ideals, not even pairs of ideals, bceanse an
ideal is (cominonly) larger than any cardinal number and in usual axio-
matic set theory it cannot be a member of any set. (2) Supposing dif-
ficulty (1) somehow overcome, we might have sets of ideals (collections
having a cardinal nuinber), classes of ideals (collections of the same size
as the universal ¢lass), and collections larger than the universal class. There
are at least two ways around difficulty (1): one may imagine the “uni-
versal class” to bo & set in some larger set theory, or one may speak of
linguistic expressions defining “sets” of ideals. Cf. [6]. We shall ignore
the difficulty. Difficnlty (2) cannot be ignored, but we shall ignore it as
far as possible.

A gset functor on a category % is a functor, covariant or contrava-
riant, from % to the category # of all sets and all functions. The contra-
variant principal set functors are the functors Map (¥, X), one for each
object X of %, which askoviate to each object W the set Map(W, X)
and to each mapping f: 17 -» Wthe function on Map (W, X) to Map(V, X)
defined Ly right wmultiplication by f. Covariant principal set functors
are defined dnally, [6]. Set functors which arc naturally equivalent to
principal sel functors ave called representable, [4].

A contravariant ideal (of 7, in X) is an arbitrary subfunctor of & prin-

(1) The ehuracterizntion stated in (9] s not correct; for example, the cless of
all purtially ordered sots and isotonoe functions satisties it. Apparently what is missing
i8 the condition on divisible homomorphisms introduced earlier in [R].
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eipal set functor Map(%, X). I particalar, Lhore are the contravariant
prineipal ideals 1 gencrated by a mapping f: W - .\ 1{T7) is the set of
al] mappings in Map(V, X) which are right multiples of I

1.1. 4 contravariant ideal is representable if and only if it is a prin-
cipal ideal generated by a monomorphism.

Proof. The principal ideal generated by a monomorphism f: W - X
is naturally equivalent to Map(%, W), multiples fg: V — X correspond-
ing biuniquely to factors g: ¥ — W. Conversely, let @ be any natural
transformation from Map(%, X) onto an ideal I of 4 in Y, and consid-
er i = @Px(l). For every mapping h: W - X, @y(h) = th. Thus I
must be the principal ideal generated by 4, and if @ is a natural equiva-
lence then ¢ is & monomorphism.

Grothendieck has introduced [3] equivalence clusses of monomor-
phisms, where two monomorphisms m and ' are equsvalent il ther arey ight
multiples of each other. He calls them “sous-trues”. We shall call the rep-
resentable contravariant ideals, to which they correspond biuniquely,
mono subobjects. Representable covariant ideals in X will be called epi
quotients of X.

A contravariant ideal I in Y will be called polar if for every mapping
feMap (X, ¥)—I(X) there is an equation hp = kyp, where b, k are mappings
in some Map(Y, Z), that is identically satisfied by all peI(W), for all
W, but is not satisfied by ¢ = f. In short, a polar ideal is an ideal defi-
ned by equations.

Obvionsly any intersection of polar ideals (of fixed variance, in a fixed
object) is polar. It is not hard to show that in a concrete category (a sub-
category of %) there are only a set of polar ideals in a given object.
A stronger result is precisely formulated and proved in [6]. With the
present conventions, we have

L1.2. In a concrete category the polar contravariant ideals in any object
form a set, a complete lattico ordered by inolusion.

We shall abbreviate “polar contravariant ideal” to polar subobject
when this is convenient. One way of requiring a category to be closed
under the formation of subobjects is to require that every polar subobject
be a mono subobject, i.e. every (contravariant) polar ideal be principal
and (it is not redundant) generated by a monomorphism. A monomorphism
generating a polar subobject may be called a polar monomorphism.

Another way to form subobjects, suggested in [3], is to factor each
mapping f in the form me, where ¢ is an epimorphism, m is 4 monomor-
phism, and no further epimorphism can be factored out; that is to say,
supposing m = m'e’, where e’ is an. epimorphism, then ¢’ is an isomorphism.
Ah .monomnrphism having this property is called an extremal monomor-
phism.,
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1.3. Lwery polar monomorphixm is extremal.

Proof. Let the polar monomorphism m be m'e’, with ¢’ epimorphie.
Then the equation hm = km is equivalent to hm’ = km’. Thus m’ lies
in the contravariant ideal generated by m, m’ = m¢. This gives m = mie’;
since m 18 monomorphie, te’ = 1. Hence e'te’ = ¢'; but ¢’ is epimorphie,
so e¢'t = 1. That is, ¢’ is an isomorphism, as was to be shown.

The convorse of 1.3 is valid in most of the most familiar categories,
but it is easy to find a counterexample to it. In the category of all abe-
lian groups in which 4z = 0 = 2¢ = 0, the monomorphism 4: Z — Z tak-
ing the generator 1 to 4 is extremal but not polar. I do not know a “nat-
ural” example in which it is not trne that the extremal monomeorphisms
are precisely the compositions of polar monomorphisms; cf. 2.1 below.

Digressing, we define a monomorphism m to be pure('™) provided
whenever m = gf, and f is an epimorphism, g is a monomorphism. Pure
epimorphisms are defined dually. A monomorphism = is copure if when-
ever m = ¢éd, and d is a pure epimorphism, & is an isomorphism. It is
a trivial exercise to prove

1.4. Every extremal monomorphism is both pure and copure.

Special dofinitions like these can be accumulated, perhaps ad in-
finitum. The present ones have some particular interest.

1.5. In Hausdorff spaoces (also in completely regular, uniform, or
proximity spaces) a pure epimorphism is ezactly an onto mapping. Hence
a oopure monomorphism is exactly an embedding.

Proof. In these categories, clearly, the monomorphisms are the
one-to-one mappings. Hence to say that e: X - ¥ is a pure epimorphism
is to say that it cannot be factored X —Z%Z — ¥ with Z — Y one-to-
one and the image of X not dense in Z. If ¢ is onto, this is true; if ¢ is
not onto, it is not true, for Z can be the free sum of X and a point (of
Y —e(X)). The rest follows from the fact that an embedding is a one-
to-one mapping m: X -+ ¥ which is not a mapping (continuous; uni-
formly continuous; ote.) with respect to any coarser strnetwe on X.

1.5 is true also for unrestricted topological spaces, but there every
epimorphism is onto and the embeddings are characterized more simply
a8 the extremal monomorphisms.

The following result is of interest to a reader intorested in uniform
or proximity spnces, and for such a reader the proof is a routine exereise.

1.6. In Hausdorff or completely regular spaces, cvery pure mono- or
epimorplism is copure; but the converses are false. In uniform spaces,
copure mono- or ¢pimorphisms arc pure, but the converses are false. In pro-
zimity spaces, pure and copure monomorphisms (also epimorphisms) coineide.

(W) Added in proaf: €. Grothendieclk’s wuniversal monomorphisms.
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2. Completeness. We call a category left complete if every polar
contravariant ideal is representable and every family (i.e. indexed sot)
of objects has a direct product.

Subject to various mild set-theoretic restrictions, left completeness
is equivalent to (a) the dual property of right completeness (b) a self-dual
completeness property indicated in 2.2 and 2.3 and (c) the weaker prop-
erty originally called left completeness by Freyd [2]. We shall not prove
(¢) here. It should be noted that (1) there is an oversight in the defini-
tion appearing in [2]; (2) allowing for (1), a sufficient condition for equiv-
alence of the definitions is that the category is isomorphic with a con-
crete category.

2.1. THEOREM. In a left complete category in which eaoh objest has
only a set of mono subobjects,

(i) every intersection of mono subobjects of a given object X is a mono
subobject of X;

(ii) every interseotion of extremal subobjects is an exiremal subobject;

(iii) every composition of extremal monomorphisms is extremal.

Specifically, the extremal monomorphisms are the smallest class of
monomorphisms containing the polar ones and closed under composition
and intersection.

Proof. Given any set of mono subobjects of X, let {m,} be a sct
of monomorphisms m,: §, - X representing them. Adjoin, if necessary,
S8y =X, my =1. Form the product P of all §,, with coordinate pro-
jections #,: P - §,. Let »n: I — P be a polar monomorphism generat-
ing the polar ideal J composed of all f5: Wy — X such that m,m.fs
= mofp for all coordinate indices a. Then myn is a monomorphism. To
see this, consider any two distinet mappings h: W -1, k: W — 1.
We have nh ## nk; so in some coordinate, m nh # m,nk. As m, is mon-
omorphie, m,m,nh # m,n,nk. Since »n belongs to J(I), monh # mynk.
Finally, the subobject generated by myn = m,m,n is in each subobject
generated by m,, and every mapping into X which factors across all m,
factors across z,n; so (i) is proved.

Next we establish the form of an extrenal monomorphism m: X - Y,
more specifically than the theorem states it. Let #,: 8§, — ¥ be a polar
monomorphism generating the smallest polar subobject of ¥ which in-
cludes m in its values; m = n,p,. Having n,: 8, -~ ¥ (for uny ordinal
number a) with m factored as n,p,, let s,.1: S,,, -8, be & monomor-
phic generator of the smallest polar subobject including p,; p. = 8a1Pa: 1)
Na 1 = MaSayy. At @ limit ordinal B, let n, represent the intersection of
the subobjects of Y represented by =, for « < f. By (i), there is Dp:
X — 85 such that nyps = m. As there are only o set of subobjects of Y,
the n, must be mutnally equivalent from some point on. This can hap-
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pen only when p, is epimorphic. But an epimorphic right factor of m is
isomorphioc; 80 we may identify X with 8,, and m is n,, formed by com-
position and intersection from the polar monomorphisms Sat1-

Conversely, suppose a monomorphism #,: S, - ¥ has this form,
and also has the form gf, where f: §, — T is epimorphic. Then for any
h: ¥ >2Z,k: XY —Z, if hgf = kgf then hg = kg. Hence ¢ factors across
81,9 = mg. By an evident induction one finds factorizations g = n,g,
for all f# < a. Finally g = n.g,, 7, = gf = n.9.f- As n, is monomorphie,
g.f = 1. Thus fy.f = f, with f epimorphie; fg, = 1 too, and f is an iso-
morphism.

From this, (iii) i8 immediate; and (ii) reducer to an exercise, which
we omit.

As a corollary, a category satisfying 2.1 may be made into a bicat-
egory. This moans [10] that one can define two classes of mappings,
the class Z of projections (or surjections) and the class S of injections
go that & is a subcategory of epimorphisms (i.e. every identity is in £,
2 i8 closed under composition, and every mapping in £ is an epimorphism),
# is a subcategory of monomorphisms, the intersection of # and # is
exactly the class of all isomorphisms, and every mapping f can be repre-
gented as o composition ¢p, with ¢e# and p %, this representation being
unique except for the isomorphic variants (¢1)(A~'p). In the present appli-
cation we define & as the class of all epimorphisms, # as the class of all
extremal monomorphisms. All the required properties are immediate,
using 2.1 where needed; for the factorization f = ¢p, intersect all the
extremal subobjects which include f.

2.2. COROLLARY. Every left oomplete category in which each object
has only a set of mono subobjects can be made into a bicategory in which
every eptmorphism is a projection.

I do not know whether there is always another bicategorical structure
in which every monomorphism is an injection. The only difficulty is that
compositions of extremal epimorphisms might fail to be extremal. A coun-.
terexample of course could not satisfy the hypotheses dual to the pres-
ent hypotheses, and therefore (in view of 2.5 below) must presumably
be “unnatural”.

There are two (or wmore) types of partial converse to Theorcm 2.1,
going from conditions on mono subobjects and auxiliary constructions
to representability of polar subobjects. One was given already by Freyd
[2]: if every family of objects has a direct product, and every set of mono
subobjects of a given objeet has representable intersection, then every
polar subobject defined by 2 set of cquations is representable. Left com-
pleteness (in the present sense) follows if we assume either that therc
are only a set nof mono subobjects in any object or that the category is
concrete.



10 J. 1. Isbell

It may be well to pause to consider these “mild” set-theoretic restric-
tions. In the opinion of the author, it is not worth much effort to remove
the assumption that a category is concrete from a theorew, but the assump-
tion that there are only a set of mono subobjects is more serious. I have
not thought of a natural example in which it is not trivial that there are
only a set of mono subobjects, but I have spent time on the problem
whether every semigroup has only a set of epi quotients without solving
it. From this point of view, Freyd’s result just stated is not marrod by
set-theoretic rostrictions. Neither is 2.1 (i); for in any loft complete cate-
gory ono can at least interscet sets of monoe subobjects. llowever, for the
rest of 2.1 —for an intersection of two extremal subobjocts or a compo-
gition of two oxtremal monomorphisms--the set-thcoretic part of the
hypothesis should be removed, or weakened to something unobjection-
able, or shown to be necessary by satisfactory examples. Of course,
these remarks are intended to apply to all theorems in general categories
involving set-theoretic restrictions; I do not mean to suggest that the
sharpening of Theorem 2.1 is an especially important problem.

Returning to the second partial converse: the digression explains
why I take time to weaken a hypothesis, defining an injected subobject
in a bicategory as a mono subobject generated by an injection.

2.3. In & bicategory in which every family of objects has a free sum,
and each objeol has only a set of injected subobjeots, every polar subobject
18 representable.

The proof iz a routine exercise.

2.3, unlike the preceding and following results, seems to be isolat-
ed and to lead nowhere. Of course it has a dual, and if both 2.3 and its
dual apply, the category is left and right complete. But the presence of
sums and subobjects does not lead to produets or quotients, even in the
category of free abelian groups.

We define the sum functor of a family of objects X, as the direct
product of all the covariant principal set functors Map(X,, ). (The
sum functor is a product because Map(X,, %) depends contravariantly
on X,; the product functor is also a product.) Bvidently the existence
of 3 sum object is equivalent to the representability of the sum fanctor.

A set functor I, let us say covariant, is dominaicd by a set 8 of ob-
Jjects it for every object ¥, for every member p of F(Y), there exisl .V eS
and f: X - Y sueh that p < F(f) (F(X)) [6]; & set Manetor dominated by
i set of objects is called proper.

2.4. TUEOREM. In a left complete category, ceery family of objects whose
sum funetor is proper has a free sum and every proper covariant polar ideal
8 representable.

Proof. The argument is essentially the same for the two cases. Let
1A wed) be o family of objects, perhaps reducing to a single object;
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let # be the set functor to be represented, that is, the sum functor or
a covariant polar ideal. Let {Y,} be a set of objects dominating 7. Let
M De the set of all families of mappings of the following form: the family
p = {m,: aeA} has a common range Y,, # == f(u), and each m, has do-
main X, — and for the sccond case, m, = melF(Y,).

Lot P be the direct product of the indexed family {¥p,): ue M}.
For each ain A, let p,: X, — P be the map whose uth coordinate ( pe M)
is the ath member m, of x. Then the sinallest polar contravariant ideal
in P containing all p, in its values is representable, so generated by some
monomorphisin z: § —~ P. We ghall show (i) that § is the direct sum
of {X,}, with coordinate injections 4,: X, -> § defined as the unique solu-
tions of =i, -= p, (respectively, (ii) that S is the required polar quotient
object).

(1) Given any family {g,: ced} of mmaps ¢g,: X, - Z, there is at
least one p == {m,} in M such that for some h: ¥p(,) — Z, go = hm, for
all a. Lot =, denote the uth coordinate projection, =,: P — ¥,; then
g = hx,n has coordinates gi, = g,.

It remains to show that g is unique, i.e. that no proper polar contra-
variant ideal in 8§ includes all ¢, in its values. Consider the family {i,}e
eF(8). There is a map ¢ (of the form hz,) from P to 8 such that for all
@y P = %q. Then ngp, = ni, = p,. If 1p denotes the identity of P, we
have ngp, == 1pp,; since u determines the same polar ideal as the p,,
ngn = 1pn also. Here ngn = n, with » a monomorphism; hence gn is
the identity 1g. That is, S is a retract of P. Now if we had ¢': S -2
with ¢'i, = gi, for all ¢, we should have g'qni, = g'qp. = 99P.; 80 g'qn =
ggn and g’ = g¢.

(ii) The generating epimorphism e: X - § will be the solution of
ne = p (p replaces {p,} in this case). There are three things to prove:
ecF'(8), ¢ generates I, and ¢ is epimorphic. First p ¢ F(P); for any equa-
tions ¢f = g satisfied by all the coordinates of p are satisfied by p. Since
% i3 a monomorphism, it follows that e satisfies the same equations as
ne, which is p. Thus ee#(8). The rest is just as in case (i).

As every reprosentable set functor is proper, 2.4 gives necessary and
sufficient conditions. More useful sufficient conditions can be given. Let
us say that an object ¥ is an amalgamation(®) of a family of objects X,
if there arc mappings f,: X, -- ¥ such that no proper subobject of Y,
either mono or polar, includes all f, in its valnes. If sums exist, this means
Y is an oxtremal quotient of a sum (with repetitions) of the JX,.

2.5. CoROLLARY. Let ¢ be a left complete category in which cvery inter-
section of mono subobjects is a mono subobject. If each object has only a set

) In groups, an amalgamation of a family of objects means an amalgamated
produet of any quotientr of the objeets.
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of extremal guoticnls, lhen cvery covariant polar ideal is representable. If
each family of objeots las only a set of amalgamations, then € 48 right com-
plete.

Proof. The appropriate sets of extremal quotients or of amalga-
mations dominate the functors to be represented, because mappings
factor across & smallest subobject of the range.

2.6. Enamples of left complete concrete categories which arc not right
complete.

It is convenient to describe the dual examples instead; the dual of
any concrete category is isomorphic with a concrete category [6].

The category % of all ordinal numbers (each ordinal a being the set
of all smaller ordinals) and inclusion functions is right complote; it fails
to be loft complete only because the empty set of objocts has no product.

Let 7 be the category of all non-empty topological spaces (or semi-
groups, if the reader prefers; or sets). Adjoin to cach object T' of .7 a “base
point” 0 (not an ordinal number; {T} will do), and extend each mapping
f by defining f(0) = 0. Call this category T'. Let s/ consist of the objects
and mappings of % and of ' and for each ae? ', XeJ ', o mapping
Jox: a — X defined g.x(@) = 0. One verifies oasily that 7 in right com-
plete. Also every set of objects has a product; but the smallest contra-
variant polar ideal in any X eZ' (corresponding to the missing empty
gpace) is not representable. For the same reason, no mapping g,y is me,
where m i3 an extremal monomorphism and e¢ an epimorphism.

If the reader prefers an example with a pair of objeets having no
product, one can be constructed by amalgamating two copies of .7 along
¥ and the product of the empty set of objects.

3. Adequate and reflexive. There are two notions of conjugate
and reflexive functors in the literature [6], [12], having quite different
purposes. The theory of Fuks and Svarc concerns functors on % to €,
and the conjugate is an “opposite”; it is a duality theory. My theory
concerns set functors and is a theory of extension. TFor example, an ideal
® may stand for an “ideal subobject” I of some objcct, each set @ (X)
standing for Map(X, F); then the conjugate @* can be used to define
Map (F, Y¥) = ¢*(Y).

The (left) regular representation of a category % [5] represents objects
of % by set functors on ¢ and represents mappings of % by natural trans-
formations; specifically, the object X goes to the coutravariant xet fune-
tor Map (¢, X), and the mapping f: X -> ¥ goes to the natural trans-
formation from Map (¢, X) to Map (%, ¥) defined by left mmltiplica-
tion by f. This is an isomorphie full reproseutation (“full” mecans that
every natural transformation between principal set functors is inulti-
plication by a mapping). For any subeategory .« of €, there is a loft
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subregular representation, X — Map (&, X) =Map (¢,X)| . «~ is
called left adequate in € if o7 i3 a full subeategory and the subregular
ropresentation on &7 is isomorphic and full.

Tho right regular (dually isomorphic) representation and right ade-
quacy are defined dually.

For any proper covariant sct functor F on %. the conjugate F* is
a contravariant set functor on %, defined only up to natural equivalence.
For each object X, the set F*(.Y) ix in one-to-one correspondence with
the “collection” of ull natural transformations from ¥ to the principal
sot functor Map (X, ). (Such a set oxists, since ¥ is proper.) For a map-
ping f: X > Y, P*(f) takes F*(Y) to F*(X) by composition with the
natural transformation f induces from Map (Y, %) to Map (X, #). Then
I ig well dofined, but not necessarily proper. If F* is proper, there is
a well defined covariant set functor F**, and there is an evaluation trans-
formation g: £ -> F*. I is reflexive if F and J™* are proper and ¢ is a nat-
ural equivalence.

The relation between reflexivity and adequacy is essentially that
& is a two-sided adequate subcategory of ¢ if and only if ¢ is represent-
able (subregularly) as a full category of reflexive contravariant set
functors on 7.

There are set-theoretic complications, treated not quite correctly
in [5] and corvectly in [6].

3.1. The conjugate functor of a principal ideal is « polar ideul; spe-
cifically, the conjugate of the contravariant principal tdeal generated by
fi: X > XY s the smallest covariant polar ideal in X having f among iis
values. Hence in case both of the principal ideals generated by f are polar,
they are mutually conjugate and reflexive.

Proef. Let I be the contravariant ideal in Y generated by f; let J
be the smallest covariant polar ideal in X including f. We define a natu-
ral equivalence @: J — I*. For each object Z, @, will take maps g:
X -»Z in J(Z) to natural transformations 7" in 7*(%). In twm 7" I —-
— Map (¢, Z) is made up of fanctions I'y: I(W) -+ Mup (W, Z). For
each hel(W), wo can write b as fi (since f generates [); we define I'yp (k)
as gt. The dofinition does not depend on the ¢hoice of i, because ged (Z).
Naturality of I" is immodiate. Iy (fts) = gts; naturality of @ is clear, from
a diagram. IBach funetion @y is one-to-one, because cach g in J(Z) goes
to o transformation /7 satisfying ['x(f) = g. Moreover, ¢, is onto; to
get any Iin I*(Z), consider ¢ == Iy(f). Since I'is natural, I'(ft) is always
gt, which proves geJ(Z) and @y(g) = I'. Thus @ is & natwal equivalence,
I* = .7, The concluding assertion follows at once,

I do not kuow any significant example of a2 mapping f generating
polar principal ideals on both xides, beyond the example of any idempo-
tent mapping f: X -~ X. That example was alveady freated in [5]
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One might guess from 3.1 that for a principal idoal to be roflexive,
it must be polar. This conjecture is quickly refuted when one recalls that
reflexivity is invariant under natural egumivalence and polarity is not;
but it is unknown whether (or how generally) every refloxive principal
ideal is naturally equivalent to a polar ideal. There seems to be 10 hope
for any comparably simple condition either necessary or sufficiont for
reflexivity of a non-principal ideal, ¢f. 6.1.

3.2. THEOREM. Let ¥ be a category in which every family of objects
has @ free sum and a direot product, and every mapping has a factorization
me where m 15 a monomorphism and e an epimorphism. Let F be a reflexive
set functor on a full subcategory  of €. Then I i3 represeniable in T; in
fact, for some object X which is both an epiquotient of a suwm, and a mono
subobject of a product, of objects of o, I is naturally equivalent o Map (7, X)
and F* is naturally equivalent to Map (X, «7).

Proof. Let D bo a set of objects of & doninating both [ and 4™
Let H be the union of all ¥*(Z), ZeD; let I be the union of all #(W),
WeD. (We suppose for notational convenience that all the sety F(W)
are disjoint; and similarly for F*(Z). We shall use the usual convention
to speak of the natural transformations h: # — Map (&, Z) a8 meim-
bers of I™(Z).) Form the sum § of the family {W;: ¢el}, where W, is
defined by i¢F(W;), and the product P of {Z,: heH}, heF™(Z;). We
define a (natural) mapping A: S -~ P by its coordinate projections A,:
8 — Zy; M in turn is defined by its coordinate injections 5. Let us write
W for W,. Then hy is a function from F(W) to Map(W, %,); pub 2,
= A (4). Finally we factor 1 as me, where e: 8§ —~ X is epimorphic and
m: X -»P i3 monomorphic. Thus X is a mono subobject of P and an
epi quotient of 8, as required. Taking account of duality, it will be suffi-
eient to show that F is naturally equivalent to Map (s, X).

For iel(W), let 7 denote the sth coordinate injection 7: W -- N.
We define a natural equivalence @ from F to Map(s/, X) by &y (4)
= ei, for WeD. For V in &7, not in D, each j in £ (V) is F(f)(4) for some
ft V=W, WeD, ieF(W). Then ®p(j) is defined as Dy (i)f -~ eif for
any such representation. It is independent of the choice of f and 4 hecause
the hth coordinate of meif is just hy (3)f = hp(j), for each hell. The
same analysis shows that @ is a natural transformation. I3ach @, is one-
to-one because [.F is reflexive and D dominates F*. On the other hand,
let ¢ be any mapping from V to X in %. Define a natural transformation
v in F**(V) as follows. For he¥*(Z), ZeD, vy(h) is the hth coordinate
apmg of mg: V -~ P. For Z not in D, vz(k) is dofined by means of repre-
sentations b = I™*(1)(k), K<I"™(Y), YeD. Again wo must check inde-
pendence of the representation and naturality. The necessary impli-
cation is Imymg = Vmemy when F*@)(k) = F*(¥)(k'). Since ¢ is an
epimorphism, it suffices to prove Im.2 = U'm,. 2. Passing to coordinate
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injections 2°, this reduces to the given formmla F*(3)(k) = F*(1')(k').
Thus » is natural, »e**(V). Since F is reflexive, there is ceF (V) such
that »z(h) = hp(c). That is, for all i, iy (¢), which must be mm®Py(e),
is m,mg; thus ®Pp(c) = ¢g. Therefore @ is a natural equivalence.

Remarks. The conclusion of this theorem is not as strong as one
might want, and I do not know what are the strongest possible results.
Nine sharpened forms of 3.2 seem to deserve mention. First, from the
proof, the factorization of A: S -» X - P is arbitrary. Thus (1) if ¢ is
2 bicategory, we may suppose e: § -» X is surjective and m: X —» P
is injective. In particular, (2) if % satisfies 2.1, we may take m to be an
extremal monomorphism, e some epimorphism. (3) Alternatively, on the
same hypothesis, we may take ¢ to be extremal. By a separate proof,
(4) we may choose X to be a polar subobject of a product of objects of .<7,
with no additional conclusion (no epimorpbism); the hypothesis on %
can be correspondingly weakened. (5) If we add to the hypotheses of 3.2
that « is right adequate in €, we can conclude (by further proof) that X
is unique, that m is & polar monomorphism, and thet e is an extremal
epimorphisin. Four more propositions (6)-(9) arve the exzet dnals of
(2)-(5).

Of these nine sharpened forms, (2) generalizes Theorem 2.1 of [H].

4. Full categories of nlgebras. A caicgory of alyebras wmeans, here,
not an abstract category but u collection of algebras and homomorphisms
forming a category. The category of algebras is called full if it includes
all homomorphisms between its objects.

In [5] it is shown that if the full category of algebras A has opera-
tions at most n-avy, where n > 1, and if 4 contains a free algebra F on
n generators, then # with its endomorphisms forms a left adequate sub-
category of »7. The same proof shows that in any full category of alge-
bras, either a single free algebra on infinitely many generators or a set
of free algebras on unbounded finite numbers of generators will form
the objects of a left adequate subcategory, if they exist. Now it is well
known that every full eategory of algebras is contained in a full ecategory
of algebras having free algebras on arbitrary sets of generators. Hence

4.1. Every full eategory of algebras is a full subeategory of a category
having a left adequate set of objects.

4.2. TusorkM. The categories which arc isomorphic with full cate-
gories of algebras are precisely those “which can be embedded as full subeat-
egories of categories having left adequaie sets of objects; moreover, they are
all isomorphic with full categovies of algebras with wnary operations.

Proof. It suffices to show that a category % having a left adequate
set: § iy isomorphic with a full nnary category. First embed % in a larger
category, eoextensive with %, but having at least fwo objeets in cach



16 J. R, Inbell

isomorphism class; and enlarge § accordingly. In particular, cach objeet
in § will now certainly be the range of a mapping whose domauin is a dif-
ferent, perbaps isomorphic, objeet in S. We associate to oach object
X of ¥ the algebra X*, whose elenients are all the mappings g: W — X
for all W in §, and whose operations are defined as follows. Thore is one
operation @, for each f: V — W, with-both ¥V and W in §; tho clomnent
Q,(g) of X* is gf if gf is defined, y otherwise. To a mapping h: X — ¥
wo associate h*: X* — Y* defined Ly h*(g) = hg. Obviously h* iz a ho-
momorphism, and (since S is left adequate) we have an isomorphism of
the category ¢ into a full category of unary algebrax. Tfinally consider
any homomorphism k: X* » ¥*. For any mapping ¢: U -> X, U in
S, consider %k(g): W — Y. By tho preliminary conatruction, thore is
f1 VW with V#W in 8. E(Q(9) = Qk(9)) = k(9)f # k(g); so
Q/(9) # g. This implies Q,(g) = gf, and W = U; that is, k prescrves
domains. Since % preserves the opcrations @,, it defines a natural trans-
formation from Map (¥, X) to Map (&, Y), where .# iy tho full subcat-
cgory on the set S of objects. Consequently % is 2* for some mapping
h: X - Y, and the proof is complote.

The representation with unary oporations i helpful in the next
proof. The reader is supposed to have some acquaintanco with the notion
of a measurable cardinal (see [G6] or [11]). In particular, the assumption
that no measurable cardinals exist is known to ba congistent with all
usnal systems of set theory.

4.3. Assuming no measurable cardinals cxist, the dual of a full cate-
gory of algebras is a full category of algebras.

Proof. 1t was shown in [5] that on this hypothesis, a countable
set NV is right adequate in the category #. Then given a full category of
algebras X, Y,..., with unary operations ¢),, we represont the dual
by assocviating to each algebra X' the set X* of all functions f: X -~ K.
Unary operations on X* are defined as follows: for each function e¢:
N -~ N, ¢*(8) = ef; for each operation Q., Q%(f) = Q.. The verifica-
tion is imunediate.

+.3 answers (essentially) a question I raiked at the 1961 Prague Sym-
pusium on Topology; the category of compact Hausdorff spaces is iso-
morphic with a full ecategory of algebras, unless moasarablo cardinals
oxigt. Several different represontations can be degeriboed, not that there
is much chance that any will ever be useful.

The problem of exhibiting a concrete category that is not isomor-
phic with a full category of algebras remuins open. The last example in
5.3 below is isomorphie with a concerete category, perhaps not with a fll
category of algebras.

5. Quusi-primitive categories of algebras. The main theorew of
this section has been rather fully stated in the Introduction, but there
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are some yuestions of alternative definitions and alternative hypothe-
ses to Le cleared up. [irst, a quasi-primitive category of algebras is both
left and right comploete in the sense of Freyd ([2] and Introduction to
this paper) and in the stronger sense of Section 2 of this paper. One can
see at once that algebraic direct products arc categorical direct products,
and that every polar subobject is representable by a subalgebra. Thus
the category is left complete. 2.5 applies (and is well known in this con-
text) becouse all the amalgamations of a given family of algebras are
algebras whose size is bounded by a cardinal number determined by the
family. This cstablishes completeness in the stronger sense, and the
definition given in the Introduction obviously follows. It should be noted
that the latter is a simplification of Freyd’s definition, shown.in [8] to
bu equivalent to it. As we want to use the weakest possible conditions
in the sufficicncy proof, we note, from [8]:

5.1 (LAWVERR). If every family of objects has a free sum and every
pair of mappings X — X has a coequalizer, then every polar quotient de-
fined by a sei of cquations is representable.

The proof goes as follows. For the polar quotient of the object U
made up of all mappings A which satisfy Af, = hg,, ae4, f, and g, being
mappings T', -~ U, defino X as the free sum of two copies of T,, for each
a in 4, and onc copy of U; define ¥ as the free sum of one copy of each
T, and ono copy of U. Let d: X — ¥ map each summand 7, of X (each
copy) to the summand 7, of ¥ by the identity mapping, and U to U
by the identity. Let e: X ~ Y map every summand of X to U, the two
copies of T, being mapped one by f, and one by g,, U by the identity.
Then ono readily verifies that the coequalizer of (d,¢) induces on U
a polar epimorphism generating the given ideal.

Remark. All that is needed to complete the proof that the two
definitions of right completencss agree for concrete calegories is to verify
that there every polar quotient is defined by a set of equations. This is
a special case of a result in [6].

It is rather well known (see e.g. [9]) that in a quasi-primitive cate-
gory of algebray there are free algebras on any set of gencrators; and
it is easy to verify that an algobra frecly generated by a non-empty finite
set i8 projectively finite, is projective in the strong sense defined in the
[ntroduction, and is not only a generator but a strict separator in the
following sonse (from [10]). A striot separator is & object P such that for
any objeet X, no proper mono subobject of X and no proper polar sub-
object of X has tho value Map (P, X) on P. In fact, in any category hav-
ing equalizers, any generator is a strict separator.

As was indicated in the Introduction, it seems better to define a pro-
Jeetive object P in the following weaker way: for any extremal epimor-
phikm e: X -~ ¥V and any mapping fﬁ Y, there exists g: P = X

Rozprawy Matematyczne XXXVIII
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such that eg = f. A further weakening, triviul in the prosent application
and probably undesirable in general, would require ¢ to he a polar epi-
morphism. Because of the dominating influence of projective and injee-
tive objects in many applications, one might be interested in allowing e
to be an arbitrary epimorphism; but in general (e.g. in the category of
all commutative rings), epimorphisms need not be onto, and not even
tho free algebras need be projective in this sense.

5.2. TUROREM. Quasi-primitive categories of algebras are charaoter-
ized (up to coewtension) by the following properties. Every family of objects
has a free sum. Bvery pair of mappings X -~ Y has a coequalizer. Some object
P is at once projectively finite, projective, and a gencrator; and finally, P
is a strict separator (or we may assume that every pair of mappings X - ¥
has an equalizer).

Proof. Necessity iy established, once we observe that these proper-
ties are invariant under coextension. For the converse, the paronthesis
is justified by preceding remarks. Next, every polar quotient A of any
object X is defined by a set of equations in Map (P, X). For this let A*
be the class of all pairs (f, g) of mappings 4 — X such that if = kg for
every h in every value of A. Suppose k: X — Z not in A(Z), and solect
(f, 9) in A*, mapping A to X, such that &f # kg. Since P is a strict sepa-
rator, there is e: P — A such that kfe # kge. ¥vidently (fe, ge)e A* A
~Map (P, X); so the assertion is proved.

Consequently a composition of polar epimorphisms ¢: X — Y,
r: ¥ — 7 is polar. For let A be the smallest polar quotient of X having
rg in A(Z). If t: X - T is in A(T), it is certainly in the polar quotient
generated by ¢; hence ¢ = ug. In turn % must be a multiple »r (showing
that rq generates /) if we can show ua = ub for every pair (a,d) in
Map (P, Y) such that ra = rb. But since P is projective, there are f and
g: P — X guch that gf = a, q¢g = b. Hence r¢f = rqg. Since te A(T),
if = tg; that is, uqf = uqg, ua = ub.

Every mapping f: X — ¥ has the form wme, where m is a mono-
morphism and ¢ a polar epimorphism; for if we take ¢ to be an epimorphic
generator of the smallest polar quotient of X including f in its values
(using 5.1), we have f = me, and if m: M -» Y were not monoimorphic
we could factor out a non-trivial polar epimorphism ¢: M -~ N, making
ge @ factor of f generating a smaller polar quotient.

Every object X is a polar quotient of 4 sum of capion of P; the sun-
mands may be indexed by Map (P, X) and the wmapping defined so that
its fth coordinate is f. The mapping is a polar epimorphism sinco P is
2 gonerator.

With these preliminaries, we construct a representation by algebras.
The object X is represented by the set Map (P, X). The algebraic opera-
tions are defined by the mappings a: P ~aP, #P heing any finite sum
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of copies of P; an n-tuple (fi, ..., f,) in Map (P, X) forms the set of coor-
dinates of a unique mapping f: #P — X, and we define a(f,, ..., fn) = fa.
For a mapping g: X — Y, we represent it by the homomorphism f — gf.
Clearly this is a homomorphism, and the representation is funectorial.
Since P is a strict separator, the representation is isomorphic.

We must show that every homomorphism F: Map (P, X) - Map (P, ¥Y)
is induced by a mapping. Represent X as a polar quotient of a sum of

copies of P, by p: 3 P; — X. I applics to the coordinates p; of P, giving

F(py) =¢q: P—Y. These mappings are coordinates of a mapping
q: M P; > Y. We wish to factor ¢ as fp, which can be done if ga = gb
whenever pa = pb for a and b: P — ) P;. Since P is projectively finite,
both a and b factor through a finite subsum of }'P;. Hence the desired
relation follows since F is homomorphic. Thus ¢ = fp. I is precisely mul-
tiplication by f sinece fp; = ¢; = F(p;) for all p;, which means all of
Map (P, X).

Thus the given category ¥ is represented isomorphically by a full
category of algebras 2. Evidently P and all free sums of copies of P are
represcnted by free algebras, freely generated by the coordinate injec-
tions.

Let {X,} be any family of algebras in 2. Their direct product is
a well-defined algebra Y, a homomorphic image of a free algebra K in 2.
The homomorphism e: K — ¥ may not be in 2, but its coordinates
e, are in 9. Let f: K — Z be an epimorphic generator of the smallest
polar quotient of K including all ¢, in its values. Now fis a hosnomorphism
onto; and the conditions under which it identifies two points of K are
exactly the same as the conditions under which e identifies those points.
Hence Z is isomoerphic with the direct product ¥, and it belongs to 2.

Precigely the same type. of argument shows that every subalgebra
of an algebra in 2 is isomorphic with an algebra in 2, completing the
proof.

5.3. TURBOREM. The siz properties in Theorem 5.2 are independent.

Proof. Six examples are required, each having just five of the prop-
erties. We note: every pair of mappings will have an equalizer in
each example, with, of course, one exception.

Four examples are trivial. The category of all cyclic groups lacks
only free suins, and the category of all free groups lacks only polar quo-
tients. The category of all abelian torsion groups in which every non-zero
element has squarefree order is complete and has projective strict sepa-
rators, but none of them is projectively finite. For an example lacking
a generator, but complete and having projectively finite projective objects
P such that for no object X do all mappings P -- X lie in a proper polar
subobject of X, take three sets 4 = B < C and the six funetions f among
them which satirfy f(x) = » identically.
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Next we deseribe a complete category of algebras having projechi-
vely finite strict separators, but not projective omes. There are u 0-ary
operation and two unary operations «,f. The 0-ary operation defines
a one-element subalgebra 0 («(0) = £(0) = 0); morcover, » 0 5> a(x)
#0, p(x) #0. We now describe the remaining structure, assuming
z#£0, y#0, af@®@)=24pe@; 2#y>al@ #aly), F@) #H);
(@) = @) D>r=m, s=mn; @ =7F0)D @)z =7F0),
y = a™(2). In short, if we define a partial ordering by means of # < ¢(x),
z < f(x), these algebras consist of 0 and a disjoint union of sets of inte-
gral points of the plane which are quadrants, half-planes, or planes.
The class is closed under direct products and free smns (disjoint sums,
except that 0 is identified). The equalizer of f,y: A" — ¥ will consist
of 0 and some set of “components” of X; so it is a subalgebra belonging
to the category. To form a coequalizer, one makes the necessary identi-
fications f(z)~ g(z); when these identifications yield components not
embeddable in the set of integral points of the plane, one identifies all
such components to 0. When identification yiolds a component embedd-
able in the set of all integral points of the plane but not having the correct
form, one adjoins points z (with z = f"(2), ¥ = a™(z)) as required by the
last axiom. Thus the coequalizers exist, but they are not always mappings
onto. Hence, one may verify, there are no non-zero projective objects,
although the free algebra on one generator is a projectively finite strict
separator.

The sixth example requires an artificial construction, for it must
be right complete and not left complete. We describe successively three
categories & ¢ # = ¥. The objects of 7 are P, R, and @Q,, for each inte-
ger n and each ordinal number a. The structure of .o involves the total
ordering of objects which is defined lexicographically for the @,., with
P the least object and R the greatest object. Also we define n(Q,..) = a;
j(X) is the greatest integer j < n(X)/3; k(X) is the residue n(X) - 3j(X).
(These functions are not defined at P or R.) ]

Map (X, ¥) is non-empty if and only if X  ¥; and Map (\\, R)
has exactly one element. In particular, this defines all Map (X, K) and
Map (R, Y); we specify now that the same definition applies in # and
in € (each Map (X, R) has one element, Map (R, Y)is empty unless 1 - R),
and we omit R from the following description.

For & we use a concrete representation 7% Let & bo a fixed abelian
group having more than one element. We represent P by tho sct P° of
all @-valued functions on the set Z of all integers. Every other X (+# R)
is represented by a copy X° of the set of all G-valued functions on the set
Z{ of allintegers m > j = j(X). To simplify notation, in defining mappings
we may identify the sets X° and Y° if j(X) = j(¥). All the mappings
in &% are composed of identifications and (1) pointwise multiplications
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by any (-valued fuuction f on the correct domain, (2) (positive) shifting
st of the functions peX®, where s'p(m) = p(m-+1), i >0, and (3) re-
striotion g, of functions @ on Z}, to ¢ | Z;, where n > m. A typical com-
posite of these operations is written ¢y y-8'fg,; the symbol eyp indicates
the domain X and the range Y, and of course there are relations con-
necting ¢, 7, n(X) and »(Y¥Y). We may omit vacuous operation symbols
such as s

Multiplication is defined by the obvions rules for ayy...epx, fy.
&', ¢, 4., and the commutation rolex

’[n.'gi = 3i([n~ i .f“"' =5 [s '(f)lv ¢S = [.qn(f)](]w.-

The mappings from X to Y, for X = P, are all possible mappings; spe-
cifically, Map (P, P) consists of all ¢pps’f, where ¢ >0 and f: Z - @,
Map (P, Y) for Y >P consists of all epps’fg, for ¢ =0, i4+n = j(X),
fr Zy -, For P< X < Y, all multiplications and positive shiftings
are allowed but restriction is allowed only when £(X) =0 or ¥(Y) = 2.
Thus if k(X)) =0, or k¥(Y) =2, or (when k(X)=1) n(¥Y) = u(X),
then Map (X, Y) consists of all ¢xps'fg, such that i >0, i+n = j(¥),
n > j(X), f: Z} ->@; in the remaining cases, these conditions must.
hold and ¢ > 1.

In &, (i) P is projective and (ii) coequalizers exist. (i) holds because
shifting is monomeorphic and when e: X —> ¥ involves no shift, every
mapping of P to Y factors across e. As for (ii), the non-trivial coequa-
lizers are the mappings cxvfq, where Y = @,,, with m = 2 (mod 3)
when £(X) is 1 or 2, and j(&X) < j(¥Y); or with m = 0 {mod 3) when
E(X) =0 or X = P. (There are also isomorphisms and mappings to R.)
o has many monomorphisms and P is not a generator. In #, on the
other hand, there will be no monomorphisms except the isomorphisms
exxf and the mappings P —> P.

# hag the same objects as .o/ and additional mappings oxy/ls';fq,,
as follows. X < ¥ < R; and cy,s'fg, is & mapping of &. If X =P or
E(X) = 0, the conditions aro i =0, Y = @n, m = 1(mod 3). If k(X)
is 1 or 2 then for j(Y) > j(X) the conditions are ¢ = 1 and Y is @,,, where
m oo 0 (mod 3) or o= 1 (inod 3) and « >0. If &£(X) =1 there are also
¢xy Af where n(Y) == n(X)-+1. Thus every object Y 4P, R is the range of
somo of these mappings; and note how they avoid the coequalizers of 7.

Before defining multiplication we define monie and epic mappings,
which will be precisely the monomorphisms and epimorphisms of 4.
A monie mapping is & mapping .Y - X', The epic mappings are the map-
pings into R, the ikomorphisms eppf, and the mappings ex)-fg, such that:
k(Y) = k(X) 7 15 o0 (YY) = n(X);or X =P, k(¥) = 0; or k(X) =1,
E(Y) =2, (YY) 2 j(X). Now to compute » product de of mappings in &,
first ignore 2 and compute the product in .«Z. Then insert 2 in case (i) e
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contains 1 and 4 is monic, or (ii) 4 confaing 1 and e is epic¢, or (iii) d:
Y — Z contains A, k(YY) =2, j(Z2) >j(¥Y)+2, and e: X — Y satisfies
n(¥Y) = n(X)+41. This multiplication is associative because all prod-
uets and factors of monic mappings are monic, and the same holds for
epic mappings with some exceptions which are saved by rule (iii). So
the category # is defined.

TFinally, to construct ¢ from % we adjoin formally a frec sum for
each family of objects of # which does not have exactly onc olement
and does not contain R. (The sum of any family containing R is R.) We
call the objects of & prime objects; for a free sum § of primes {X,} in C,
8 # R, the prime summands of S are the X,. The mappings from any
prime object to a sum are, formally, all the mappings into its prime sum-
mands; thus every mapping X — § factors across a unique coordinate
injection. {One easily proves, though wo do not need it, that this defi-
nition, being stated in formal terms, becomes true in categorical terms;
each sum S # R determines its summands uniquely.) This completely
defines ¥, for the mappings whose domain is & sum are determined by
their coordinates and multiplication reduces to multiplication in £.

% is the required example. It is immediato that every family of objects
has a free sum, that P is projectively finite, and that equalizers do not
oxist. In fact, every monomorphism into a prime X >P oxcept the
mapping from the empty sum is isomorphic. Since every mapping from
P to a sum factors across & prime summand X, and every epimorphigm
from a sum to X has an epimorphic coordinate (X has a largest proper
polar subobject), the verification that P is projective need only be done
in #, where it is immediate. Similarly, because of the triviality of the
monomorphisims, it is immediate that P is a generator.

As for coequalizers, first, they exist in #£. For the coequalizers in
&/ remain coequalizers in %, and the new problems in % reduce to those
given by pairs of mappings X — @,, differing by A, and are solved by tho
identification mapyping (of «°) to Q,.,,. Next consider two mappings
X — 8 in ¥, where X is prime. The problem of coequalizing reduces to
a previously solved problem unless the mappings take X to different primne
surnmands of §,

d
X—— ¥

c

y
VA

We may supposs ¥ <Z < . Five casos remain. We (ako cases
in & first, and we suppress pointwise multiplications, whiel require
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only pomtwme multiplication by a corrective factor. (1st) Z = P. Then
d is cpps e 1s cpps’, 8ay j = i+ h. The coequalizer 6: 2P — P has ¢oor-
dinates cpps and ¢pp. (2nd) ¥ =P < Z. Then d is opps* y € i8 ¢epzs“qn.
If ¢ < wu there is again a coequalizer P4Z — Z with second coordinate
trivial, ¢zz; bul if ¢ = u4+h >u, we must pass to W @sm, Where

—_7(7)-|—h and map P+Z to W by cpwqm 8nd ozps®. (3vd) P < Y;
80 d i8 ¢xyS'q,, ¢ i8 0xzs¥g,. This splits into several subeases. If i < %,
and j(Z) > j(Y)+u—1, ¢ is a mulliple #d, and Y+Z — Z by » and czz
coequalizes. If ¢+ < % and j(Z) is less (by b) than j(¥Y)+u—14, coequaliz-
ing requires restriction ¢z g, where m = j(Z)+b. W will be the first
object which occurs as the range of such a mapping (Qsumoe O Qymyae
depending on k(Z)). Y is mapped to W by oprs* g (t =3j(¥)). Simi-
larly, if ¢ > «, Y must be mapped by restriction cyp-g, to an object W
to which Z can be mapped by shifting ez, s™*; there is always a first
object for which this is possible, and it yields the required coequalizer.
(4th, 6th) The 2nd and 3rd cases have variants involving A. If e is a mul-
tiple rd, r and ¢zz are the coordinates of the coequalizer. If this is not
the case, 1 must be eliminated. Ignore 1 and apply the appropriate sub-
cago of tho preceding. Either this yields a mapping Y47 - W > Z,
which is then the coequalizer, or it yields a mapping Y+Z — Z, which
may be wrong by A. In the latter case one must apply the identification
mapping from Z = @Q,, to @, .,,. This concludes all the cages of two
mappings X -> 8§ in ¢ for prime X. If X is a sum of primes, each prime
summand of X presents a problem of the preceding type; one requires
the simultancous solution of these problems, and since the prime objects
arc well ordered, it is clear that the solution exists. This establishes 5.3.

We now make a serios of observations about different representations
of a complete category ¥ as a quasi-primitive category of algebras. In
5.2 such a representation is constructed for any projectively finite pro-
jective generator P, representing P by a free algebra on one gencrator.

First observation: 5.2 gives all representations. For, any quasi-pri-
mitive category of algebras %° has a free algebra on one gemerator P?,
and if one repeats the proof one recovers the ground sets X°~ Map (P, X)
and the homomorphisms. One gets the same complete collection of al-
gebraic operations (polynomials), for these correspond exactly to the
mappings from P to its finite sumg, Of course ¥° may have been presen-
tod by o finite set of axioms and primitive operations, and 6.2 will not
recover these.

NSecond observation: these different representations explain
why Sewmadeni’s proposed invariant definition of free object [10] cannot
always agreo with customary definitions. As Semadeni has shown, in
many c¢ases there is a natural smallest P. (And this holds in & much more
general getting than the algebraic one.)
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Third observation: I do not know any distinetive properties of
(finitely) axiomatizable categories of algebras. A quasi-primitive catogory
of algebras whose primitive operations are all at most n-ary, for some #,
has a single left adequate projectively finite projective object (a free
algebra on n generators [5]). I have circulated a “proof” of the converse,
until E. G. Sulgei.fer found an error in it; now 1 have a counterexample,
and T hope to treat the problew further in another place. There is ai easy
reduction:

5.4. Bvery quasi-primative category of alyebra with operations at most
n-ary 18 coextensive with a quasi-primitive category of algebras whose oper-
ations are at most binary. ‘

To prove this, choose for P a free algebra on m generators where
2m > n. Call the given (concrete) category %°; construct another con-
crete representation %' as in 5.2 but using only the operations a: P —-
> kP for : = 0,2. (k =1 can be omitted but &k = 0 cannot.) IFrom left
adequacy of 2P it follows as in 4.2 that we have an isomorphic represen-
tation by a2 full category of algebras. (Mappings 2P -- 2P amount to
nothing niore than pairs of mappings P — 2P.) For & ‘product object
X° of objects XY, Map (P, X) = X' is the Cartesian product of the sets
Map (P, X,) = X., and the operations are defined coordinatewise. It
remains to identify the subalgebras of Y' with the subalgebras of ¥°,
i.e. to establish that classes of mappings from a free algebra P to an
algebra Y which are closed under operations a: P - OP and a: P — kP,
where & > 0 and the number of free generators of kP is at least », are
just the classes of mappings into subsets of ¥ which are closed under
0-ary and n-ary operations—by a routine computation.

Fourth observation: of any two projectively finite projective
generators in a complete category, each is a retract of a finite sum of co-
pies of the other.

The clagsification problems suggested Ly these remuarks seem very
difficult. The problem of classifying all quasi-primitive categories of
algebras probably should not be posed. One can show (using an analogue
of the notion of height in abelian groups) that there are more than a uni-
verse of quasi-primitive classes of algebras with two unary operations.
By the first and fourth observations above, categorical isomorphism can-
not reduce this diversity significantly.

I'vom the first obgervation after 5.3 and Lawvere’s characterization
[3] of primitive categories of algebras, it follows that « quasi-primitive
cateqory isomorphic with « primstive category is primstive. Tt is central to
Lawvere’s work that a (concrete) primitive category of algebras is deter-
mined (up to conerote isomorphism) by the full subceatogory of finitoly
generated free algebras. Lawvere calls this category, or rather u dnally
isomorphic category, an algebraie theory. One arrives at a central classi-
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fication problem: which algebraic theories have isomorphic categories
of models, i.e. determine isomorphic primitive categories of algebras?

In view of the fourth observation (about retracts), this classifica-
tion problem can be reformulated in several ways. It might be useful to
concentrate on the smallest rather than the largest quasi-primitive cate-
gory containing the (ree algebras.

The characterization of algebraic theories is not very difficult.
Lawverc does not treat it as a problen, but in effect he has given the solu-
tion [8]

We remark in conclusion that if one wants u characterization of guasi-
primitive and primitive categories of algebras up to isomorphism rather
than up to coextension, essentially one need only adjoin the condition
that for each object thore is w universe of isomorphic copies. There ix
an exception for the empty set, and although an empty algebra is usu-
ally characterized as an algebra to which no other algebra can be
mapped, there is a trivial exception to that too. We omit the details.

6. Zeros. In a category %, an object L is a left zero if for every object
X there is exactly one mapping from L to X. A left zero functor is a co-
variant set funetor assigning to each object a one-point set. Clearly any
two left zero objects are isomorphie, and any two left zero fanctors are
naturally equivalent. Right zero objects and functors are defined dually.

A mapping from an object X to a left zero object L, or more generally
a natural transformation from a left zero functor F to a principal
set functor Map (X, %), distinguishes for each object ¥ one element of
Map (X, Y), the image of F(Y); in fact, F is taken by a natural equiv-
alence onto a subfunctor of Map (X, ¥), a covariant zero ideal of X.

There arve only a set of covariant zero ideals of X ; for such an ideal
[ is determined by I(X) = {1}, every othor I(Y) = {j} being given by
j =fi for any f: X — Y. Thus if the covariant zero functor 7 is prop-
er, hore is its conjugate functor F'*. F'* associates to each X a set index-
ing the covariant zero ideals of X, and to each f: X -» ¥ the function
which f induces from the zevo ideals of ¥ to zero ideals of X.

The functor M need not Le proper, o.g. for a category having a prop-
er clasy of objects but no mappings between distinet objects. But when
F is improper Ghere is still a natural definition of #* TFor then there
are no covariant zevo ideals, since such a zero ideal J of X iy a left zevo
functor dominated by \; 2o we define *(X) to be empty for all X.

With this definition, /* is always a proper contravariant set functor.
'This is trivial when every F*(X) isn empty. If soine F*(X) has an ele-
ment /, then .Y dominates F*. To see this, consider any JeF*(Y). J(X)
is a mingloton (j} in Map (T, X). We shall show o = F*(j)(I). As was
noted above, for this it suffices to show agrecment on Y, JJ(Y) = {ij}
where J(T) = {i}. Now J(T) ik at any rate some singleton {y}, and
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ify = J (i) (y)ed (X); s0 iy =y. Similarly jyed(X); 5o jy = j and
ijy = 4j, completing the proof.

The indicated theorem is

6.1. THEOREM. A left zero funotor is reflemive of il is proper, and in
any case it is the conjugate of a proper set functor. If the left zero functor is
improper, there cxist mo covariant zero ideals.

Proof. It remains to compute the conjugate of F* as defined above.
Let a be a natural transformation from F* to Map(%, ¥). We wish to
show that e is the evaluation taking each IeF™(X) to i: X -~ ¥, whore
I(Y) = {i}. We introduce I(X) = {e}; it will snffico to compute (1)
a(I)e =4 and (2) a(Il)e = a(I).

For (1), a(l)e = I(a(I))(e)eI(Y) does it. For (2), a(L)e is a(F™(¢)(I))
by naturality of a; but the zero ideal 7*(e)(I) has the value ce = e on
X (ee = I(e)(e)eI(X)), which means it is I, comploting the proof.

7. Inadequacy. Every category has some reflexive sot functors (even
the empty category). There are always the principal set functors [5] (and
the other representable ones), and often the zero functors and their con-
jugates given by 6.1 and the dual theorem. We call these tho irivial re-
flexive set functors. We turn next to some categorics all of whose refle-
xive set functors are trivial.

The group Z,, considered as a category with ono object, has a non-
trivial reflexive set functor, which can be described oither as the sum or
as the product of two principal set functors. We call this the exceptional
reflexive set functor on Z,.

Recall that a principal ideal ring is a ring in which every left ideal
is principal.

7.1. TuEOREM. Let & be a semigroup with unit, considered as a cale-
gory with one object. If <7 is the multiplioative semigroup of a principal
ideal ring which has no proper divisors of zero, then there are mo mon-iri-
vial reflexive set functors on &7. Excepting the exoeptional reflexive set funo-
tor on Z,, the same s true if o7 is a group.

Proof. It is somewhat simpler to avoid chasing conjugate functors
by considering .« as ombedded as an adequate subcategory of somo ¥
and examining Map (X, ¥) and Mayp (Y, X), where X is the object of
#7 and Y any object of €. Let us use the notation Map*(¥, X) (Map*(X, Y))
for the set of natural fransformations from Map (4, ¥) to Map (4, X)
(Map (Y, A) to Map (X, 4)); reflexivity, or adequacy, pormits us to
identify these sots with Map (¥, X), Map (X, Y), respectivoly. Lot M
denote the given xemigronp Map (Y, X); and take fivst the case that
M is a group.

If the set of mappings Map (X, Y) is empty, then Map (Y, X) =
= Map* (Y. X) has exactly one clement, and Y is the loft zero; similarly
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if Map (¥, X) is empty then Y is the right zero. Otherwise, we have
(a) for g: X — Y and e 5 f in M, ge # gf; for there is h: ¥ — X, and
hg in M sotisfies hge #* hgf. Similarly, (b) for g £ ¢’ in Map (X, ¥) and
fin M, gf # g'f; for (by adequacy) there is 2: ¥ — X such that hg #
# hg’, which implies hgf s hg’f. Thon Map (X, ¥), under the action of
M, decomposes into orbits on each of which M is simply transitive. If
there is just one orbit, Y is a principal set functor. Suppose ¢ and g’ are
members of two different orbits in Map (X, ¥) and thore are three (or
more) distinet olements, a, b, 0, of M. Choose representatives g, of all
the other orbits in Map (X, ¥). We describe three different transforma-
tions a; in Map*(Y, X). Observe that to specify each a; we need only give
it valuos on g, ¢, and all g;, and these values are arbitrary. Then let
a, have the valuo a on cach of these; lot a, and a; agree with a, on ¢’ and
all g;, but a,(g9) = b, a3(g) = ¢. Sinco ./ is adoquate, the a; correspond
to unique mappings in Map(Y, X). Morcover, Map(Y, X) decom-
poses under the action of I into orbits on each of which M is simply tran-
sitive. Clearly «a;, a;, @y are in different orbits; choose representatives
a; of all other orbits also. There is a transformation » in Map*(X, ¥)
determined by the conditions »(a;) = a, »(e;) = b for j #1. But » is
not induced by any member of any of the orbits in Map (X, ¥), a contra-
diction.

If M has only two elements, tho case that Map (X, ¥) has two orbits
is possible, as already noted. But if thero are three mappings g,, ¢., ¢;
in different orbits, a slight chango in the above argument leads again
to a contradiction.

Now suppose M is the multiplicative semigroup of a principal ideal
ring R having no divisors of zero (with «, %, X, Y as before). There
is certainly a zero transformation in Map*(¥, X), and also in Map*(X, ¥Y);
thus there are at least the corresponding zero mappings in Map (X, X)
and Map (X, ¥). If there are no others, ¥ is a zero functor. (The left and
right zero functors are conjugate in this case). Otherwise there are non-
zer0 Muppings in both Map (X, ¥) and Map (¥, X). As in the previous
cage wo conclude (a) for g: X — ¥ not zero and 0 #¢ #f # 0 in M,
ge # gf; und (b) for g s ¢’ in Map (X, Y) and f # 0 in M, gf #¢7.
Then Map (X, Y) under the action of M decomposes into equivalence
classes IC; on cach of which the semigroup of non-zero elements of M
acts cffectivoly, together with 0. (Non-zero elements ¢, ¢', of M(X, ¥)
are in the same I, provided for some ¢ and f in M, ge = ¢'f # 0.) More-
over, any function on Map (X, ¥) into M whose restriction to each set
IGM - K,o {0} is a natural transformation is itself a natural trans-
formation,

In tho subease that M is finite, the non-zero elements of A form a
group, and tho argument of the previous case applies with trivial modi-
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fication. There ik no exception for M having only two elewents, 0, 1:
for now if ¢ and ¢’ are in different K, trausformations «, taking ¢ to 0.
g’ to 1, and a, taking g to 1, ¢’ to 0, are nnrclated under the vetion of M.
(There is a third «y as before, with ay(g) = u(g’) <= 1.)

If J is infinite, there is still only one I(; = M (X, Y)- {0}. The
argument is almost as before, but we give it here. Suppose ¢,, ¢, are in
K,, K,. There exists a natural transformation «; from Mayp (X, Y) to
M (¢ =1, 2) such that o;(g;) # 0; and there exist two cloments, ¢, f, of 3
different from 0 and 1. Then we define f,, fy, fz in Map*( ¥, X) as follows:
all three vanish on all K different from K, and K, and coincide with g
on IK,; on K,, f;, coincides with a,, fiy(#) = ef;(@), fy(w) = ffi(x). With
£:(0) = 0, these are homomorphisms, and may be identified with wap-
pings in Map (¥, X). As before, the fg; lie in three different equivalence
clagses K! in Map (Y, X); there is a transformation » in Map* (17, ¥}
taking f; to a;(g1)e, f. and fy to «;(g,), and » iy not induced by any wmem-
ber of Map (X, Y).

Thus there is only one K ; that is, any non-zero g and ¢' in Map ({X', Y)
satisfy a relation ge = ¢'f, ¢ and f non-zero members of M. Tt follows
that a mapping 7: ¥ - X is determined by the value hy, for any fixed
non-zero g: X — Y. For if hg = h'¢g then hge == h'ye for all e; but if
hg'f = W'g’f then hyg' = L'¢’, when f # 0. Now fix g,, and consider the
set I of all elements of M of the form hgy, he Map (Y, X). In the ring
R, I is a loft ideal, for the functions in Map” (Y, X) are clearly closed un-
der addition and left multiplication by sealars. Then [ is the set of all
fuz,, f ranging over M, for some x, in J. There is &, in Map (Y, X) such
that hyg, = x,. Every hg, is then fz, for some f in I, which is moreover
unique, since g, is not zero and z, is therefore not zero. But the funetion
v on Map (¥, X) to M which takes each k to this unique f is a natural
transformation, since hg, = fz, implies (eh)g, = (ef)m, and wv(eh) =
ev(h). The transformation » is one-one from -Map (X, ¥) onto .I/:
therefore Y is a principel set functor, as was to be shown.

If one wishes to generalize 7.1 to cancellation semigroups, or to
arbitrary rings without zero divisors, there must be at least a longer
list of exceptions. Indeed, at least for u commutative ring without zero
divisors, every ring ideal yields a reflexive set functor; what happens
for principal ideal rings is that all these functors are naturally equivalent.

8. Adequate and measurable. Now we shall completa the trestment
of adequacy in categories of vector spaces. First, if w category % has
an adequate subcategory .« which can be isomorphically reproesonted
as some class of left vector spaces over a fixed division ving 1, then %
also can be so represented, by [5], 2.1. Thus the only question remain-
ing concerns the dimensions of the spaces. (There is also a question
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about uniquencss of representation, which we leave us a very ecasy exer-
cise.) We shall prove, for infinite cardinals m, n:

8.1. THEOREM. In a full calegory % of vector spaces over o division
ring, & full subcategory containing one m-dimensional space is adequate
if for every cardinal n which 18 the dimension of a space in €, every m-addi-
tive two-valued measure on the field of all subsets of any sel is n-additive.

It is not hard to show also that if % contains an n-dimensional space,
and there oxists a two-valued measure which is not n-additive but is
m-additive for every m, which is the dimension of a space in the sub-
category 7, then .« is not right adequate. (.7 is left adequate as soon as
it includes a twodimensional space [5], 2.2.)

8.1 is true also for m = 2 (by duality for finite-dimensional vector
spaces) and for wm =1, vacnously, and m = 3, 4, ..., trivially. For
m=0, n=1, it is false. With Theorem 7.1, we have a complete deter-
mination.

In fact we shall prove

8.1*. Theorem 8.1 holds as well for free modules over any ring with unit.

Here we do not have a complete solution of the problem.

Lot us concentrate on the case m = §,. The cardinals n for which
evory Ny-additive easure is n-additive are called non-measurable, and
it is known to bhe consistent with the axioms for set theory that every
:ardinal is non-measurable. Lot I denote a free module on non-measur-
ably nany generators, I* the module of all homomorphisms of ¥ into
the ground ring, and E** the module of all homomorphisms of E* into the
ground ring. We call a countable sequence of elements f, of E* point-
finite if, for cach z¢F, almost all f,(x) are zero. We call an element ¢
of E*™ bounded if for every point-finite sequence {f,} in E* almost all
»(f,) are zero.

By definition those clements Z of E** which are defined by evaluation
at some ze¥% are bounded. Conversely,

8.2, TiuworrM. When the dimension of E 4s non-measurable, every
hounded functional in B is an cvaluation.

The credit for 8.2 belongs largely to V. L. Klee. I was looking for
a counterexample when he commmnicated a proof for the countable-di-
monsional cage.

Proof of 8.2. INrst, represent I as the set of all functions with
finite support on a sot & of power n. Then E* may bo represented as the
set of all functions on 8. Tor subsets 7 of S, let y, denote the character-
istie function of 7.

Tet ¢ Le u bounded functional in #**. Then

(2) There is a finite subset T of N such that for every f in B* with
finite support, ¢ (f) = e (fxr).
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Indeed, assuming the contrary, we should have f;, with finite sup-
port such that ¢(f,) # 0, and successively f,,, with finite support H,, >
> H,, such that ¢(fr,1) # ¢(fo+1xz.)- Then the functions f,....;-—fn“xﬂn
form a point-finite sequence and ¢ vanishes on none of them, a contra-
diction.

It follows that ¢ agrees with a certain evaluation @ at least on the
functions with finite support. Then ¢—2 is 2 bounded functional van-
ishing on functions with finite support. It remains to show that any such
functional y must vanish identically.

Suppose the contrary, y(f) # 0 for some f in E*. Considor tho values
u(T) = (fxr) a8 T varies over the subsets of §. We have

(b) For some T, u(T) # 0, but whenever 7 == H v K, with H and
K disjoint, either u(H) or u(K) is zero.

Indeed, assuming the contrary of this, we could construct an infi-
nite sequence of disjoint sets H, with all x(H, ) different from zoro; then
{fxa,} would be a point-finite family on which ¢ never vanishes.

Let T be asin (b), and define a2 measure » on the subsets o I': »(U) = 1
if u(U) #0, »(U) =0 otherwise. Then » is a countably additive two-
valued measure vanishing on points. That is, (i) » vanishes on points,
gsince y vanishes on functions with finite support; (ii) » is finitely additive,
since v is additive; (iii) if {U,} is a disjoint family and each »(U,) =0,
then »({_J) U,) = 0. For, suppose the contrary. Let f, be f times the cha-
racteristic function of the union of all U; such that i > n; then {f,} is
a point-finite sequence but y(f,) #* 0 for all #n. This contradicts the assump-
tion that the cardinal of § is non-measurable, and completes the proof
of 8.2.

For higher cardinals, we define a poini-finite subset of E* as a set
of functionals no infinite set of which are non-zero at any one point of E;
and an m-compatible element of E** as one which, on any point-finite sub-
set of E* of power at most m, agrees with an evaluation. We have

8.2%, If the dimension of E is n, and every wm-additive two-valued
measure is n-additive (m > R,), then every m-compatible funmotional in
E** i3 an evaluation.

For the proof, use the proof of 8.2 up to the final step (iii); then
observe that the products of f with the characteristic functions of all
U, and of their union form a point-finite set of power at most m.

Proof of 8.1*. We know the free module F on m goenerators iy loft
adequate, and need only establish right adequacy. Let Z bo froo on n
generators as before; let M be any module. Observe that ( choosing a basis
in F) the elements of Map (&, F') are just the point-finite wm-tuples of
elements of E*. A natural transformation a from Map (E, I!) to Map (M, F)
associates to each such m-tuple an element of Map (I, F). Thon for each
me M. the transformation a(.)(m) takes point-finite m-tuples of eale-
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ments of E* to m-tuples (almost all zero) of elements of the ground ring.
A simple computation using the naturality of a shows that this transfor-
mation is just termwise application of an m-compatible functional, which
by 8.2" is evaluation at an element a(m) of B. Further computation shows
that the function a: M — I so defined is a homomorphism inducing a,
which completes the proof.

9. Direet sums. The proofs of the following results are routine and
are omitted.

Let {8,} be any family of semigroups with 0 and 1, and § their direct
product. Then a single object X with the semigroup of endomorphisms
S forms an adequate subcategory of a category which contains also objects
X, with semigroups of endomorphisms S,, each X, being in effect the
reflexive sct functor on X determined by the idempotent ¢, in S which
is projection on §,. Two different X,’s are connected only by zero mappings.
The object X is at once the categorical sum and product of the objects
X,. Reciprocally, the X,'s form an adequate subcategory of this cate-
gory.

Any reflexive set functors #, on some or all of the X, have a sum
F which is reflexive on the aggregate: F(X,) = F.(X,), or a one-ele-
ment set (“zero”) if no P, is given. Every reflexive set functor on X is
obtained in this way.

In particular,

9.1. If the ring R is a finite direot sum of n total rings of endomorphisms
of d;-dimensional vector spaces over division rings D; (each d; finile), then
the reflexive set functors on a eategory with one object whose endomorphisms
form the multiplicative semigroup of R correspond naturally lo the n-tuples
of e-dimensional spaces over the D; subject to the restriotion ¢; < d; if d; < 1.
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