ANNALES
POLONICI MATHEMATICI
XXI1 (1969)

Note on the existence of periodic solutions
of a second order differential equation

by F. H. SzAFRANIEC (Krakéw)

1. We consider the periodic boundary value problem
(1) z'+f(t,z,2') =0,
(2) w(a) =x(b), 2'(a)=2'().
We assume that
(3) (@ —xp, y1 —¥) < f(1, 21, Y1) —f (L, @2y ¥2) < Gol@, —T5, Y1 —V2)
where the functions G; and G, are defined by the formulae

K,z+Ly, i x>0andy=>0,

Gy, y) = K,z+Ly, if 2>0and y<0,

n K,o+Ly, if 2<0andy<o0,

) \Kyo+ Ly, if 2<0and y=>0;
K,z+ Ly, if x>=0andy=>0,

Gy, y) = Kyx+Ly, if >0and y<0,

2 Kaz+Ly, if x<0andy<o,

\ K,z+L,y, if x<0and y=>0.

Let a(L, K), (L, K) be the distance between a zero of a non-trivial

solution of
w'+Lu'+Ku=0

and the next and preceding zeros of %', respectively. a(L, K) and 8(L, K)
may be computed explicitly (see, for instance, [2] or [5]).

The minimum distance between consecutive zeros for any non-
trivial solution of
(54) w'+G(u,w)=0 (i=1,2)
is (see [2]) a(L., K,)+ (L, K,).

Shampine [5] has proved that if f is continuous on [a, b] X R* (R de-
notes the real line) and satisfies (3) there with

(6) 0 <b—a<2[a(ly Ky)+p(Ly, Ky)] and K,>0,
then problem (1) and (2) has at most one solution.
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The purpose of the present note is to show how from mentioned
Shampine uniqueness theorem and the Lasota-Opial [3] theorem one can
obtain the corresponding existence theorem, that is the following

THEOREM. If f s conltinuous on [a,b]x R® and satisfies (3) there
with (6), then problem (1), (2) has exactly one solution.

This theorem gives, in addition, a better evaluation for b—a than
the corresponding Shampine existence result ([5], theorem 6). Recently,
however, Bailey and Shampine [1] using quite different method have
obtained the same evaluation.

2. We study first the following periodic boundary value condition
(1) w(t+p)=ult), wW+p)=wuw(l), —oo<t< 4oo.

LEMMA. Suppose 0 < p < 2[a(L,, K;)+B(Ly, K,)] and K, > 0. If
u such that '’ is locally summable satisfies condition (7) and almost every-
where the inequalities

(8) w4+ Gh(u,u') <0,
(9) u” - Gou, u’) = 0,
then u(t) =: 0.

Proof. For u ¢ C* satisfying (7) and everywhere (8) and (9) two
cases are possible: either (i) x(?) = 0, or (ii) z(¢) # 0 for all ¢.

Let us consider first case (i). From the Bailey, Shampine, Waltman
theorem ([2], theorem 3) if follows that it is possible to apply Peixoto’s
theorem on differential inequalities ([4], theorem 2) to the condition

(10) u(ty+p) = ully), w(t-+p)= w'(t)

and inequality (8) and (9). But, under our assumptions, by the men-
tioned Shampine theorem ([5], theorem 3) problem (5,), (10) as well
as (5y), (10) has only the trivial solution. Hence, finally, u(t) = 0.

Considering case (ii) we suppose %(t) > 0 (the proof when u(f) < 0
is similar). There is a point ¢, such that «'(¢;,) = 0 and «''(t;) > 0. From (8)
and (4) it follows that w''(t,)+ K, u(f,) < 0 what is impossible since K, > 0.
Thus %(t) = 0.

Let now %'’ be a locally summable funection. Suppose u satisfies (7)
and almost everywhere (8) and (9). Let r,: R—[0, + co0) be a ¢ function
such that suppr, C[—1/n, 1/n], and

1/n
[ ra(tydat=1.
—1/n

Then u, = u*r, (* denotes the convolution) is a C* funetion and,

by the well-known convolution properties, satisfies condition (7) and
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everywhere (8) and (9). The previous considerations imply wun(t) = 0.
But w%,—wu uniformly. Thus %(¢) =0 what completes the proof of
lemma.

3. Proof of theorem. Put z(z,y), g(2) = [y, —f(, z,Y)),
F(2) = {(y,7): —Gyz,y) < ¥ < —G(z,y)}. Problem (1) and (2) has now
the form
(11) Z=g(t,2),

(12) z(a) = z(b) .

Condition (3) may be written as follows

gty 21) —g(t, 2) e F(2,—2,) .
From our lemma it follows that the pfoblem
?' e I'(z) almost everywhere

and (12) has only the trivial solution. Applying the Lasota-Opial theo-
rem [3] we deduce that there exists exactly one solution of problem (11),
(12) what completes the proof of theorem.
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