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1. Introduction. Let o/ be a Banach algebra. By an analytic semigroup
in &/ we mean a function t—y, from the right open half plane H
= {teC:.Ret > 0} into o/ which is analytic and y,y, = y,,, for all s, re H.
The aim of this note is to prove the following theorem:

THEOREM 1. Assume that an element y in a Banach algebra satisfies
() lu(ny)l = O(Inl")  as |nj— x

where

>

uy)= 2, —y".

m=1 M'

Then there exists an analytic semigroup (y,)rei>o0 in o over H, such that
(i) sup It lyll < + o0 for some k = k(r);

Ret21

(i) linglly.y*—y“ll =0.
t>0

On the other hand, in-a particular case when the algebra is radical,
J. Esterle ([3], Theorem 2.1) has proved the following:

THEOREM 2. Let ® be a radical Banach algebra and let (y,)g..>0 be an
analvtic semigroup in ® over H. If

~ gl
sup e” ||yl < + 0
Ret21

for some x < 1, then the semigroup (y,)re:>o is the zero one.

These theorems together imply that in a radical Banach algebra any
element y satisfying (1) has to be nilpotent. Since the converse implication is
also true, we get a characterization of nilpotent elements in radical Banach
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algebras. Some corollaries of this type, all closely related to a theorem of
E. Hille (cf. Corollary 3) are discussed in Section 3.

2. Proof of Theorem 1. Let ./, be the Banach algebra obtained from
&/ by adjoining an identity in the standard manner. Then by (1) we have
(2 ||e"“’||“,,l =0(4") as |A|— 0, AeR.

Let C"*!(R) denote the space of all functions from R into C with
continuous and bounded derivatives of all orders up to r+ 1, equipped with
a norm

dﬂl
Fllgrss = max supl " F(p).

o<sm<r+1 ieR
It is classical that if a function F is in C"*!(R) and has compact support,
+ + o
then | |F(A)|1A"dA < +00. Thus by (2) the integral | F(A)e*rda is

absolutel‘y convergent and so it defines an element F(y) in .«/,. We have

3) IF Wllay < ClIFligr+15
where the constant C depends only on y and on the measure of supp F. Also
) (Fy Fy))(y) = F (»)F,(»).

Now let F be a function from R into [0, 1] which is r+1 times
continuously differentiable and satisfies

(@) FO)=0and F(1) >0 for A #0.

(b) F(4) = e~ "% in a neighbourhood of 0.

(c) F(A) =1 for |4 = 1.

For any te H the function 1—F' belongs to C"*!(R) and has support in
[—1, 1]. Thus it operates on y in &/;. We want to prove that the family
(V)ret>0 defined by

»=1-(1-F)(y)

has all the properties of the theorem. First observe that in fact y, is in <.
Indeed, if ¢ denotes the homomorphism from &/, into C defined by ¢ (x+ 4)
= A, then ¢(y)=1—-(1—F)(0) =0 and so y,ekerop = «.

It is clear that the function r — y, is analytic in H. Also the equality y, y,
= Ys+15 S, t€ H, is an immediate consequence of (4). To prove (i) and (ii) we
will use (3). Property (b) of the function F guarantees that

dlll
L

and since F(A) is far from zero outside of any small neighbourhood of 0

=0(AI"2"F () as |4 ~0,
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(property (a)), together with (c) it gives

5) I;L F(A)|<

for all A#£0 and all m=1,2,...,r+1. Now a routine computation and
inequality (5) give

const - |A| " 2™ F(A)

(6) d;,,(l —F) (1)' < const - max ({t], [¢]™)-|4] 2" [F ().

In particular
|47 2™ [F (A)]R" < |4}~ ™ F(4) < const
when Ret > 1. Thus
Il = F'|| .+ < const - ltI*1, Ret=>1,

and (i) follows.
Finally

=Dy * ALy, = IF, Ol
where F, is a function defined by
F,(4) =(1=F'(A)A¥*2.
If te(0, 1), then from (6)

(1= F) )

< const - |t] |4 2.
Therefore F, -0 in C"*!(R) when t —» 0 and so (ii) follows.

3. Applications. A theorem of Hille. Let .o/ be a Banach algebra with
a unit and let x be an arbitrary element in .&/. If A, is an isolated point of
the spectrum o (x) of x, then at i, the resolvent function R(4) = (x—A4)"! has
a Laurent expansion

() R(A) =} (A—4)a,,

where

a, 2LJ<1 Ao) "' R(A)dA
c

and C is a small circle about A,. The series (7) is absolutely convergent for A
close enough to 4, and by the properties of the resolvent function, it follows
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that a_, is a non-zero idempotent in & and
) a.p=(x—4o)" 'a_,

forn=1,2,... If a,=0 for some n <0, then by (8) also a, =0 for all m
< n. In this case A, is called a pole of x and the biggest integer n with
a_, # 0 is called the order of the pole.

CoROLLARY 1. Let of be a Banach algebra with unit and x an invertible
element in . If

) X"l = O(nl")  as |n| - oo

holds for some r, then any isolated point of the spectrum of x is a pole and the
order of the pole is not greater than r.

Proof. Assume that (9) holds and that 4, is an isolated point in & (x).
Let

R()= ¥ (-dofa,

be the Laurent expansion of R(4) in a neighbourhood of 1,. We shall prove
that q, = 0 for some negative k.
Put

(10) y=i)

A-k-1
=1k

(this series is absolutely convergent since lim ||la_,||'/* = 0) and denote by &/,

the closed subalgebra (without unit) in o/, generated by y.
Recall that

1
a_y_ =2_1tiJ‘(j.—lo)kR(A)dl, k=1,2,...
C
Thus we may write (10) in the form

1
y=2—n-J(lnAo—lnl)R(}.)d)..
C

From this we-get easily a(y) = {0} and so that </, is a radical Banach
algebra. Moreover for any integer n

u(ny) =2Lm. j[e"'"““"'""-l]k(,l)dx
C

= (ﬁ.anx"—l)a_l.
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Comparing this last formula with (9) (note that |io| =1, which also is a
consequence of (9)) we get

lu(nyll = O(In|")  as |nf - x.

Therefore y satisfies the assumption of Theorem 1 and there exists an
analytic semigroup (y)rr>o0 in &, satisfying (i) and (ii). But .o/, is a radical
Banach algebra, thus y, =0 by Theorem 2. Theorem 1 used again implies
now that y is a nilpotent element, so the element

(Ao 'x—1)a_, =u(y) =y( 2 :n—!y""‘)

m=1

is also nilpotent and both have the same order. But then
[(Ae'x—1)a_,J*=4o*a_4_, =0

for some k, which means that 4, is a pole of x.
It remains to prove that the order of 4y is not greater than r. Let k be
the order of 4y, so that a_,_, =0 but a_, # 0. Then by (8)

k

x"a_l = z ('.l)).'&—Ja_j_l

=1V

for any integer n > k. So

1
lim n™*||Ix"a_,|| = -« >0

n—*o0
and so

lim infn=%||x"| > 0,

n—ao

which together with (9) implies that k < r. This completes the proof.

Property (9) clearly implies that the spectrum o (x) of x is contained in
the unit circle {1eC: |A| = 1]. In a particular case, when it consists only of
isolated points, we have the following:

COROLLARY 2. Let x be an element in a Banach algebra with unit. If the
spectrum o (x) is finite and lies in the unit circle, then the following conditions
are equivalent:

(@) lIx"| = O(nl") as |n| — oo.

(i) Any point in the spectrum o(x) is a pole.

(i) There is a polynomial P such that P(x) = 0.

Proof. The implication (i) = (ii) is just the Corollary 1. The
equivalence (i) <> (iii) follows from the Minimal Equation Theorem [2],
Vil1.3.16. To get the implication (ii) = (i) assume that the spectrum of x
consists of singular points A,, 4,,..., 4, having orders v, v,,..., v,



292 T. PYTLIK

respectively. Let

1
,=— |R j = y oeey K,
e; 2m_f(l)di, ji=1,2 k
<

where C; is-a small circle about 4;. Then by [2], VII, Theorem 2.2, we have

en$ £ (rmaire

j=1m=0

n

nin—-1)...(n—m+1) and (n)
0

(for negative n the symbol ( m!

m

=1). Since 4] =1, j=1,2,..., k we get

) is defined by

X"l < C- max |(";))

osm<r

with r =max {v;: j=1,2,..., k} and C = max{|[(x—4)"ejl: j=1,2,..., k;
m=0,1,2,...,v;}. This gives (i).

We finish this section with a result which was originally proved by
E. Hille [4] and later simplified by M. H. Stone [8] (see also [5], Theorem
4.10.1).

CoroLLARY 3 (Theorem of Hille). Let ./ be a Banach algebra with unit.

If x is a quasi - nilpotent element in </, then a necessary and sufficient condition
that x"*! =0 for some r > 0 is that ||(1+x)"| = O(|n]") as |n| — oo.

4. Remarks. 1. It is of importance in Corollary 3 (and so in the other
corollaries) to have an estimate from above of the growth of ||(1+ x)"| for
both positive and negative powers. For example the operator T which acts in
I2(0, 1) by

Tf () = gf(S)ds

is not nilpotent although ¢(7T) =0 and ||(1-T)"| = O(n) as n— o©. Indeéd,
we have

t n—1
T f(t) = L:_l)!f(r—s)ds, n=1,2, ...,
0

thus

T(1-T)"f(t) = [Ly(s) f (t =5)ds,
0
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where L, is the n-th Laguerre polynomial. Now by [9], 7.21.3,

e” L, () < 1,

1
thus |[(1-T)""!'—(1-T)" < [¢’*ds < 2 and so ||(1-T)7| < 2n.
0

In fact, a more strict estimate for ||(1—T)"| holds. Namely, ||(1—T)"
= 0(n'/*%) as n— oo0. Indeed,

(I-=-T* f(1) = f()— L) (s) f(r—5)ds
0

with I} (s) = —dgs-L,,(s), and one may use the estimate

max e~ Y2534 LY (s)) = O(n'*)

0ss<1

(cf. [9]), Theorem 7.61) instead of 7.21.3.

2. It follows directly from Theorems 1 and 2 that Corollary 3 remains
true with an estimate for u(nx) instead for (1+x)". This suggests some
possible applications of Corollary 3. For example J. Dixmier ([1], Lemme 6)
proved that if G is a group of polynomial growth then in the group algebra
[} (G) any continuous and hermitian function with compact support satisfies
(1) with r = 1+growthG. Choose a net (f),, of such functions with the
property that (f*'),, form an approximate identity in L (G). Of course
o(f) # {0}, but if ¢ is a continuous homomorphism from L (G) into any
radical Banach algebra, then we may apply Corollary 3 to the algebra
@ (L (G)). We get then o (f*') =[¢(f)] "' =0 and so ¢(L (G)) = {0}. This
shows that the group G has a weak Wiener property in the sense of [7]. This
has been known since [6].

Acknowledgment. I would thank Jean Esterle who showed me the
example in Remark 1.
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