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ON SOME CLASSES OF DISTRIBUTIONS

BY

SZYMON SZNAJDER (WROCLAW)

Introduction. In this paper we consider the spaces H, and K,,r > 0,
(for the definition see below) which, for r = oo, become the spaces studied
by Hasumi [1]. The general idea of the proof of our theorem 1 is the
same as in [1]. In the sequel a characterisation of the functionals over
the spaces H, and K, is given and in particular the periodic functionals
over K, are studied. We consider here only the case of one variable; the
generalisation to several variables is obvious. The author would like to
express his sincere.thanks to Dr Z. Zielezny for suggesting the problem
and. for helpful discussions as well as to Prof. C. Ryll-Nardzewski for
valuable indications.

1. Let H,, where r > O, denote the space of all complex-valued
C*-functions f on R such that, for any k,p =0,1,2,...,
&'H% | DPf ()| < oo,

where O < 7, <7, <...,7, =7, and D? stands for d”/dxP. The topology
in H, is defined by the seminorms

4 (f) = sup (¢ 1D f(@)).

K,, with » > 0, will denote the space of all complex-valued functions
®(2), which are analytic in the strip V, = {z: |Imz| < r} and which are
rapidly decreasing in any narrower strip V,, ({r,} is the same as before H,)
i.e., for any k¥ = 0,1, ... and for any derivative ¢/ (2) there is

L+ ™ Ip™ () > 0 it [a] > o0,  2eV,,.
The topology in the space K, is defined by the seminorms
p;(p) = sup [Fg(2)|.

zeV,.J,
Note that seminorms p; are equivalent to the seminorms

p; = sup |[¢ Dg(z)|.
st,.’,
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THEOREM 1. The Fourier transform provides a topological isomorphism
of the spaces H, and K,.
Proof. If feH, and if ¢(2) is its Fourier transform

+00

o0 = fio) == [ = fwa,

—00

then
1
o) = —= [ (—i"e =D f(a)
T %
Thus, for z¢V,, , we have
+
@l <= [ e )an < oa()
Tc —00

with 1 > max(k, m).
Therefore ¢(2) is an element of K, and the transformation H, — K,
is continuous.
Let now ¢(2)eK, and let
+o00

f e o (u)du

— 00

1
fl@) = ——

Using Cauchy’s integral theorem, we can write, for any real v such that
v < 7,

+00
D?f(x) = —1/2 D’”[ f e“‘“””)q)(u—l—iv)du]
T —00
+o0
=™ 2 ¢, f € ulp (u+iv)du.
0<g<p -

Therefore D?f(x) is equal to ¢~** multiplied by a bounded and con-
inuous function of x, so feH,. The desired continuity follows from the
nequality

+o0

lfe"’"uq u—l—zrk)du| f [+ 7| "2 w97 | TP o (u+ i) | du < Cppys (@)

which is valid for any k¥ and ¢ <k

2. Let H, be the dual space of H,. Since the space 2 is dense in H,,
H,is a subspace of the space 2’ of distributions of L. Schwartz. The
characterisation of elements of H, is given in the following
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THEOREM 2. A distribution 8 belongs to H, if and only if there exist
an integer k, a positive number ¢, and a continuous bounded function F(x)
such that :
8 = DF[e" 9 F()].

Proof. Let S be of the desired form. Then the value of 8 on fe2,

+00

8,fy = (=1 [ ¢~ F(2) D*f(x)dw,

may be estimated as follows:

+00

K8, I< [ 1F(@)e™ e t%g,(f)dw < Oar(f),

-—-00

where 7, >r—¢ and C is independent of f. Hence, by the continuity
argument the formula for (8, f) holds for each feH,. Let now SeH,
be a functional eontinuous with respect to a seminorm g;. If fe H,, then
the function

fil@) = € D f(a)

is continuous and vanishes when |z| — oco.
Using the theorem of Hahn-Banach and the form of functionals
on the space of all continuous functions vanishing at infinity we obtain

+o0
8,f) =<8, 1> = [ Df(a)aL(w)

+00

= (—1) [ f(=)D’*' L(s)dw,

where L(x) = 0(e"'*). o
‘Hence k = j+1,e =r—r;,,, F(x) = "+ [ L(x)da.
0

THEOREM 3. A sequence of distributions 8;eH,,j = 1,2, ... converges
in the topology of H, to a distribution SeH, if and only if there exists a se-
quence of continuous and bounded functions F;(x) uniformly convergent
to F(x) and such thal

8; = D*(e"= F,(x)), 8 = D*(e"~9 F(x)),

for some ﬁ:ved k and some fixed ¢ > 0.

After having noted that H, and its dual H, (cf. [2], p. 372) are Montel
spaces, the sufficiency becomes obvious. The necessity may be proved
in the same way as in theorem 2.
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+00
THEOREM 4. The series Y ¢, 0, converges in H, if and only if its coeffi-

n=—0o

cients satisfy, for any n, the inequalities
lon| < Me™™,
where M and s > 0 are constants independent of n and s < r.

+ o0
Proof. We must show that for any feH, the series ) ¢,f(n) is

n=—00

convergent. To do it choose ¢ > 0 such that s+ e < r. Then

+o00 +o00
Z le,f(n)] < C 2 eSnl g (st ~ o

n=—0oo n=—0o

+o00
If Z’ ¢, 6, were convergent and if there existed increasing sequences

{34}, {M;}_, 8 =1, M, — oo and a subsequence {n,} such that for ¥ =0, 1, 2,...
there is

Icnk| > Mkesklnkl7
then introducing the sequence of functions {f.}, all bounded in H,, by
the formula

fe(@) = e %" f(x—my),

where fe2 and f(0) =1, we would have

sup |enfi(n)] = slclplcnkfk(nk)l > sup | M| = oo,

what gives a contradiction.

3. The Fourier transform 7 of T<H, will be defined, as usually, by

<T’f> :<T’f>7

where f(2) = f(—a), feH,.

Let K, be the dual space of K,. In view of theorem 1 the following
is true:

COROLLARY 1. K, is the space of Fourier transforms of distributions

of H,. The Fourier transform provides a topological isomorphism of spaces
K, and H,.
Remind that the derivative dT'/dz K, of a functional T ¢ K, is defined

by the formula
d d
—T = —(T,— .
<dz 7‘7’> ; < ’ dz('v>’ peK,
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THEOREM 5. If T belongs to K, , then there exists a functional S belonging
to K, and such that

— T.
sz

Proof. Note that each yeK, may be represented in the form wy(2)
= A,@0(2)+ ¢ (2) Wwith ¢, ¢, PecK,, D(z fq) dt and ¢, being the
same for all y. To show it, it suffices to put A f p(t) dt and to take for

@, any function of class K, with the integral

+00

[ gotydt = 1.

— 00

It is easy to verify that the functioral S defined by
8, 9> =1,0—-L<T, &)

has the desired property.

In view of the fact that the operator (iD)* acts on the Fourier trans-
form, as the operator of multiplying by £ we can meaningfully define the
differential operator of infinite order acting on K, by

o0 2’-

¢h(aiD) = 2(—1)?'-(;],)' DY

i=0

due to the convergence of the correspondjng series obtained by replacing
1D by &.

Let now TeK,.. Then T = 8 with SeH., and 8, in view of theorem 2,
is of the form

8 = D*[ch((r—e)é) F(£)] = ch((r—¢))G(£),

where F is a continuous and bounded function. Therefore G is the sum
of derivatives of F' (i.e., G is a bounded. distribvtion), some of which are
multiplied by the bounded function ch((r—e)&). So we can write

T = ch((r—¢)iD)G,

and this leads to the following

THEOREM 6. T is an element of K, if and only if there exists a positive
number ¢ and a bounded distribution G such that

T = ch((r—s¢)iD)G. °

The distribution @ used in the formula for 8§ may be modified in
a way such that G eC®. In view of corollary 1 and of theorem 3 we obtain
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THEOREM 7. The sequence T;eK,, j = 1,2, ..., converges in the topo-
logy of K, to T <K, if and only if there exist an integer 1, a positive number ¢,

and continuous functions dj(z), G (2) such that
T, = ch((r—¢)iD)G@;, T = ch((r—e)iD)@,

and é,(z) /(L4 |2]2)" converges to C;‘(z)/(l—i- 2|2)} uniformly in any strip Ve,
Moreover, by corollary 1 and theorem 4 we obtain
+w ), 4 . .
THEOREM 8. The series ) c,€é™ converges in K, if and only if its
n=-—00

coefficients satisfy, for any n, the inequalities
leal < Me™,
where M and 8 < r are constants independent of n.

4. A functional T will be called periodic with the period 2= if
Ty T =T.
THEOREM 9. If T of K, is periodic, then it has a representation

T = ch((r—¢)iD)@,

where G is a periodic function.
Proof. Let TeK,. By theorem 6 there is

T = ch((r—e¢)iD)@,

and so it remains only to prove that @ is periodie. In view of our assumption
T is periodic and therefore we have

ch((r— €)iD)@(z+2) = ch((r—¢)iD)@(2)
what in terms of Fourier transforms can be put in the form
~ch((r—¢)£)G (&) = ch((r—e)é) &G (&).
Since ch((r—¢)&) vanishes nowhere, we can conclude that

G (&) = ™G (&),
and this means that

A

¢(2) = 736 (2)
THEOREM 10. If TeK, is a periodic functional, then T.is of the form

+00
inz
T = 2 ¢, e,

n=—00

the convergence being understood in K,.
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Proof. By theorem 9,
T = ch((r—¢)iD)@,

where G is a infinitely differentiable periodic function.
Therefore

Gy = Y a,em,
Nn=—00

the convergence of the last series being uniform in any V,, .

Now
+o00 400
T = ch((r—¢)iD) Z a,6™ = Z c, €™,
where T T

e, < Mer—9n

which, in view of thoerem 8, guarantees the convergence.
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