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On Hermite expansions of 1/z and 1/|x|

by S. LEwANDOWSKA and J. MIKUSINSKI (Katowice)

Abstract. Distributions 1/z and 1/|z| are considered as distributional deriva-
tives of I |x| and sgnz-Inlz|, respectively. The Hermite expansion of 1/z is given
in [1]. In the present paper the Hermite expansion of 1/|z| and an asymptotic esti-
mation of coefficients for 1/z are given.

1. The distributions 1/x and 1/|»| are defined as distributional der-
ivatives of In|z| and sgnz-In|x| respectively, i.e.,

L = (In|z])’ and 1 = (sgnz-ln |x|)’
;= (njel)  and - = (sgna-lnjal).

They are tempered distributions. Consequently, each of them can

[s =)
-be expanded into an Hermite series ) a,h,, where
n=90

b, () = (—1)*(V2rnl)~V2 ¢ (g=="12)m)

and the coefficients a, are inner products of h, and i/m or 1/|z|, respecti-
vely, i.e., a, = (1/z, k,) or a, = (1/|z], h,).
The espansion 1/ into the Hermite series is given in [1] and its
coefficients are
4

V8r

a, =0 forevenn and ae,=——u, for odd n

Vn!

With ul =1 alnd ’Mn_l_l = 1'3'---'(7'1—1)_%',“”_1-

In this paper we shall prove the following asymptotic equality
.3 1
(1) lim ¥V2n—1-|a,,_;| = l/;, where a, = (—;, hn).
N—r00

We also give the Hermite espansion for 1/|z|.

It is interesting that in this expansion the Euler constant ¢ = 0.57...
appears. However, an asymptotic estimate for the coefficients of the last
espansion seems to be much more difficult and will not be given here.
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. 4 8
2. In order to prove (1) we introduce the notation a, = ‘/—E A,
n

R
for odd ». Since a, = y¥8=%, we have 1, = 1.
Moreover, we see that the numbers 4, ., satisfy the following equation

| . o 1 13-...-(n—1)
(2) }“"+1+]/(n—1)-(n+1) Fnr = Vi1 l/ 2:4-....m

for n = 2,4, ...
They can therefore be expressed as

(3) Ingr = bpy1ppnyy  for m=2,4,...

) i) -
Mn 41 m—1)-(n+1) Mp—1 =
It is easy to verify that the numbers g, =1 and y,,, such that
1/2-2 4-4 n-n
Bnir = ('_1)”2]/ : Caat
1-3 35 (n—1)-(n+1)

satisfy (4) for even n.
From (4), (3) and (2) we obtain by a simple calculation b, = 1 and

1 1:3:5-...-(n—1) _
bﬂ-l-l =b, + 2 l/ :un-ll-l

Vrn+1 2:4:6-...-n
for n =2, 4,...
Hence it follows that
1 1-3 , 1-3...-(rn—1)
bn+1=1—E+H—...—l—(—1)"’“ R for n =2,4,...

Now we are going to find lim|y,,,| and limbd, ;, with even n.

n—>m n—oo

By simple caleulations, we obtain

—i/zl'l)--l L ]7"‘
sl =/ 2=} =) Vi

Hence we infer that

. /o 1 1
= v ]
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From the equality

x? x? x?
sinmte = - a:(l—?)(l—?)(l—gz—)...

it follows that
sin e . x x2 x?
" — sint— - 1——2 1——2
2(1—a?) 2 3 5

Hence, if z tends to 1, we have

Tl g3

By the last equality and (5) we infer that

. vz
(6) lim |y, | = 5

It remains to find limb, ;.

—00
We have

o= (e P

Hence if z tends to 1, we get

1 —1/2 —1/2 —1/2 13 .
ﬁ=( o) +H(T7) () —1‘“+2—;"-=,}L‘1‘f’"+1'

Finally, by (6) and (3) we have

lim (A — = l/_
ﬂ]'_I;I:'OI n-{-ll 2 V2
Hence (1) follows, which was to be proved.

3. In this section we shall expand 1/|x| into the Hermite series.
Since 1/|z| is even, ¢, = 0 for odd # and

(7) ¢, = ((sgne-1n|2}), h,(®)) = —(sgna-In|z|, k,(2))
= —2f Inz-h,(z)dz _for even n.
0
It is known that (see [1])

Vo +1-h,,  (2) = xh,(2)— Vnh, ().
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Hence

0o 0

f%(l/ﬂlhﬂﬂ(m)ﬂ/%hﬂ_l(w)) =fhn(m)dw-

0

Integrating by parts, we find
—_flnw(m+1h;+l(m)+1/Eh;_1(m))dw = fh,,(m)dm.
0 0
Consequently, by (7), we can write
(8) Vin+1le,,,+Vne, , =2 john(w)dm.
0

Using the known formula (see [1])

Vo+1h,,, = —2h,+Vnh,_,,

we obtain
(9) Vn+1 fhn+1(w)dm—u/ﬁ fh,,_l(w)dw = 2%, (0).
; ;
By (8), we cf;\,n write
Vn+1Vn+2-¢,+(n+1)e, =2Vn+1 fhnﬂ(w)dm
and °
n-e, +Vn¥n—1-¢c,_, = m/Efmh,,_l(m)dm.
G

Hence, by (9), we have

(10)  V(n+1)(n+2)epp+c—Vn(n—1)¢,_ , = 4h,(0) for even n.

It is easy to verify that

00

1
Co = —- f:vlnme“’z”‘dw

Vor
and .
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By a simple calculation, we obtain

o
=—= — Gy
l/— Vor
Hence, since
f zlnz-e*Mdr =Ind—0,
1}
where C is the Euler constant we can finally write

1
Co = —- (In4 —0)

Va2r
and
1/87c
Moreover, we have (see [1])
n/2 % _1
h,(0) = l/— ...... -———  for even n.
1/211: "

Thus the sequence {c,} is defined.

4 — —
Substituting », = V2x-Vn!-¢, into (10) we obtain the following
equation

(11) Vppztrn—n(m—1)p,_, = 4(—1)"*1-3-...-(n—1).
The general solution of (11) has the following form:
v, = Aa,+ BB,, where aqj =1, f, = —1
and a,.,+a,—n(n—1)a,_, =0, and B, =0, f; =1, and
BasstBa—n(n—1),_, = (—1)"*1-3-...-(n—1).

Therefore we have

6 = —— (Ao, +BB,).
Vam Val

By simple calculations we find that A =1n4—C and B = 4.
Finally, we can write

" [(In4—C)a,+4p,] for even n,
(12) ‘% =\VorVn!
o for odd n.



172

(13)
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In particular, the initial three coefficients of the expansion are

1 _ ((ln4—0)ho+ [4—(In4—0)] L__hﬂu
V2!

lwl 4
Vor

1
+3(n4—0)—8)- h4+...).
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