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Subharmonic analogues of MacLane’s classes

by R.J. M. HORNBLOWER (London)

1. Introduction. It is natural to ask whether the classes 7, Z and &
introduced by MacLane in [3] have subharmonic (s.h.) analogues,
and if so what relations exist between them. We shall see that these
analogues do exist and are identical as are </, #, and %. The analogues
&, and %, of o/ and # are defined in the natural way, but we must take
care when defining %, the analogue of £, in order to cater for the possi-
bility of a s.h. function being locally constant, in which case it would
have both a Koebe sequence of level curves and asymptotic values. The
criterion we adopt is therefore somewhat different, as is seen in Defi-
nition 6.

We start off by defining what we mean by a continuum tending
to the boundary of a domain.

DEriNiTION 1. If D is a domain we say that I" is a continuum in D
tending to the boundary of D if

PZU'}’M

=1'
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where
(i) y, is a continuum lying in D for each n,
(il) ypey Oy, #= O for any n,

(iii) given any compact subset £ of D, we can find an integer n,
such that E ny, =@ for n > n,.

If in addition y, -~ as n — oo in the sense that diam y, - 0 as
n — oo and d(y,, {) — 0 as n — oo, then we say that " tends to the point L.
Clearly by (iii) { must lie on the boundary of D.

DEFINITION 2. Let D be a domain and let {y,} be a sequence of
continua in D satisfying (i) and (iii) of Definition 1 but such that y, N
Ny, =0 for all m, n > 1 with m +# «n. Then {y,} is said to be a sequence
of Koebe continua, and we shall use the term Koebe sequence in this paper
to denote such a sequence. (Thus we are dropping the condition normally
imposed on Koebe sequences that the y,’s be analytic arcs, and asking
merely that they be continua.) If y is an are of |2 =1 and
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maxmin |z —2’| + maxmin|z—2'| -0 as # — oo
zey, 2'ey z'ey zey,

)

we say that y, >y as n - oo.

DEFINITION 3: «/,. Suppose that «(z) is s.h. in the unit disc |2| < 1
and that #(2) - a as |2] - 1 along some continuum I" tending to a point {
of |2 =1 (i.e. u(z) >a as zel — ().

Then we say (eA,; if the set

A= U 4.
—cosca<{-}oo
is dense on |z =1, then we say that we ;.

DEFINITION 4: #,. Suppose that % (2) is s.h. in |2|] << 1 and that «(z)
is bounded above by some constant M ({) on a continuum /" tending to
a point ¢ (|| = 1). Then we say that (e B'.

If B'u A, is dense on |z] = 1, we say that ue %,.

DEFINITION 5. For our purposes, a subarc of an arc y will be a closed
arc y’ lying in y and not containing either of the end points of y.

DEFINITION 6: ¥,. Suppose that u(2) is s.h. in |2| < 1 and that {y,}
is a Koebe sequence tending to an arec v of [2] = 1, where y does not
reduce to a point. Suppose that u(z) is bounded above by M on the se-
quence {y,}. If these conditions always imply that for any interior point {
of v, u(2) is bounded above in some neighbourhood N,({) = {2: |{ —%| <
< dNlzl<1} of in |2)< 1, we say that ue%,.

Our result is

THEOREM 1. 7, = 4, = €,.

‘2. Topological preliminaries to the proof. Suppose that u(z) is s.h.
on a compact set E (i.e. in some open set O > E) and let F denote the
set of points {z: u(2) > K, z¢ I}, where K is some real number. Then
since u () is upper semi-continuous (u.s.c.), F is a closed set and therefore
decomposes into closed maximal connected subsets I, called the compo-
nents of F, each point of F' belonging to exactly one component F,, where a
runs over some index set I.

Now suppose that instead of on a compact set &, #(z) is s.h. In |z| < 1.
Let z, be a point in |2| < 1 with u(z,) > K.

DEFINITION 7. The compartment of the set {z: u(z)> K, |2| < 1}
containing z, is defined to be

C(zoy Ky 1) = U C(2o, K, 1),
. r<l
where C(z,, K, 7) is the component of {z: u(z) > K, |¢| < r} containing z,.
Since C(z,, K, ;) = C(zy, K, r,) for r, < r, <1, it follows that the
compartment C(z,, K, 1) is connected.
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In a similar way we can define compartments of the set {z: u(2) < K,
|2| < 1}, but since this set i3 open there is no difficulty in defining the
components, and the definitions of compartment and component give
rise to the same sets.

3. Proof of Theorem 1. Following the preliminaries, we now set out
to prove the theorem. The proof consists of proving the following
inclusion relations:

(i) o<
(1) %, < €,,
(iil) €, = A,
so that, as opposed to MacLane’s proof it is not necessary to show that
€, c B, and #, c ,; these two steps are combined in (iii) above.
3.1. &, c Z,.

This is clear, for on any continuum I' tending to a point { and on
which #(2) - a < oo, u(2) is bounded above so that {e B'.

3.2. B, < %,.

%

Fig. 1

Suppose that ve¢ #, and that y, —y is a Koebe sequence on which
u(2) < M’ < oo. Let y" be a subarc of y.

We observe first that ' N 4., = @, since any continuum I'" tending
to ey’ meets infinitely many y, in any neighbourhood of £, so that u(z)
cannot tend fo infinity on I.

Thus B’ is dense on y’; choose distinet points a, Sy’ N B’ and let
I'y, I', be continua tending to a, f respectively on which % (2) < M" say;
let M = max(M’', M"). .

Since y’ is a subarc of y, and y, —y a8 n — oo, it follows that I,
and I', must meet y, for n > n, say. y, is a continuum, therefore compact
and lying in |2| <7, <1 say; let D, be any domain whose boundary
consists of subsets of I, I';, y, and y, for n > n,. Then u(2) < M on
the boundary of D, and therefore inside D,, by the maximum principle.
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Let 9" be a subare of ¢’ and let 2z, be a point lying in a small neigh-
bourhood of y”" with |z, > r,. Since y, lies finally outside any compact
subset of |2| < 1, it follows that z, must lie in some domain D,, so that
u(%,) < M; since z, is arbitrary it follows that »(2) < M in a small enough
neighbourhood of »’’. Since B’ is dense, ¢ and g may be chosen to lie
outside ¢’ and since y’ is arbitrary, '’ is an arbitrary subarc of y. Thus
Ue €,.

4. The kernel of the proof consists of showing that €, = .#; this
is quite a lengthy procedure and we need the following result, which is
of some interest in itself.

THEOREM 2. If u(2) is 8.h. in |2] < 1 and u(z,) > M, then there exists
a continuum I, conlaining z, and tending to |2| = 1, on which u(z) > M
and u(z) > M, > u(z,) as |2| -1 along I.

The proof of this result requires five subsidiary lemmas, three of
which are due to M. N. M. Talpur ([4], § 1) and one of which is an immediate
consequence of Lemma 3. The fifth lemma is the s.h. form of Hadamard’s
convexity theorem.

LEMMA 1. Let u(z) be s.h. in |2| < K. Then if u(zy) > M,, there is
a circle C, centre z, and lying in |2| < R, such that u(z) > M, on C.

Note. Since u(z) is s.h. in |z] < r for all r < R, we may choose C
to have arbitrarily small radius.

LEMMA 2. If u(?) i8 8.h. in |2| < r, then each component of the set
{z: u(2) = K} contains poinis of modulus r.

From this we deduce immediately

LeMMA 3. If u(z) 28 s.h. in |2] < 1, then each compariment of the set
{z: u(z) = K} goes to the boundary, i.e. possesses limit points of modulus 1.

LEMMA 4. Let u(z) be s.h. in |2| < r and let K be finite. Set

u(z), 2eC(z, K,7),
ur(z) = .
K, elsewhere in |z| <r.
Then u,.(2) is 8.h. in |2| < 7.
LeEMMA 5. Let u(z) be s.h. in |2] <1 and let B(r) = supu(z). Then

|2| =7
B(r) is an increasing convex function of logr, so that if 0 < ro<r<r, <1
and (2| = r it follows that
B(ro)logr,[r+ B(ri)logr/r,
logr,/re. )
If B(1) = lim{supwu(z)], it follows on letting r, — 1 that

[z[—1

u(2) <

(7)< B(ry)logl/r+ B(1)logr/r,
= log1/r, '
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We now prove Theorem 2. If u(z) is a constant, then the result is
trivial; we assume that %(2) is non-constant in [2] << 1. Choose z,, |z,| < 1,
and suppose that u(z,) > M. Let C(z,, K, r) and u.(2) be as previously
defined and set

M, = sup  u(2).
zeCl(zg, M, 1)

We see first that M, > u(z,), for u(z,) < M,, since z,¢e C(2,, M, 1}
and if u(zy) = M,, then u,.(2) = M,, so that C(z,, M,, r) contains the
whole of |z] < r. Thus #,.(z) = u(?) = u(z,) for |2| < r; since this is true
for all r < 1 it follows on letting » — 1 that «(2) = M, in |2) < 1, contrary
to our assumption.

Next, we show that given r, < 1 there is an M, = M,(r,) such that
u(z)< M, < M,, and so u,(2) < M,, for zeC(2y, M,1) and [2]|<7,,
and all ¢ such that ro < o < 1.

To see this' we use Lemma 5. By a suitable conformal map we may
assume that 2z, = 0. Choose &£ > 0 so that M = u(0)+e¢<< M,. Then
for |2| < é, say we have u(2) < M for otherwise the u.s.c. of u(2) at
2z = 0 would be contradicted. Thus u,(z) < M" for |2| < d,and 0 < p < 1.
Thus for |z2| =7y, and d, < 7y <7, < p < 1 we have

M logr [ro+Mylogry/d,
logr, /8,

%, (2) <

by Lemma 5. By letting o — 1, we see that the same inequality holds
on C(zy, M, 1) with u(2) instead of u,(2). Now let r, —1; we obtain

M’ logl [ry+ M,logr,/d,
log1/éd,

for ze C(2,, M, 1). Since 7, < 1, it follows that M,(r,) < M,.

Now choose z, and ¢, With [2] =7, > 7, such that u,(z) > M,.
Then z,¢ C(2y, M, ¢,), which also contains z, and is a continuum y, say.
It follows from (1) and our choice of 2, that C(z2,, M,, 1) lies in |2] > r,.

Next, we repeat the above argument to obtain that given r, with
ry > 1., there is an M, = M,(r,) such that u(z) < M, < M, for ze C(z,,

M,, p,) and || << 7,, where M, = sup wu(2). To do this we use, instead
ZEC(ZI, le, 1)

of the function #,(2) which is defined relative to C(z,, M, 1), the function
u(z), zeC(21, M;,0),

M,, elsewhere in |2] <1,

(1) u(2) < (= My(r,) say)

e (2) =

which is easily seen to be s.h. in |2} < g, 7, < p < 1.

It is clear that v,(2) = u,(2) for zeC(2,, M4, o), and the existence
of M,< M, follows since otherwise v,(z), therefore u,(z) and so u(z),
would be constant in |2| < ¢ for all p < 1 and thus in |2] < 1.
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Now choose 2, and g, such that (% (#;) > M, and denote the continuum
C(zy, M,, 03) by 7,. Then y, Ny, contains the point z,, and on y,,
u(2) > M,. y, lies outside |z| < r, by construction. To carry on the con-
struction, we choose z, and g, so that u, (2,) > M, and set y, = C(z,_,,
M, _,,0,). Then y, by construction will lie in |2| >r,_;; if we choose

r, -1, then = [ y, is a continuum tending to the boundary.
n=1

We obtain in this way an increasing sequence {M,} and a decreasing
sequence {M¥}, with M% = supu(2), ze C (2, My, 1). If M% = -+ oo, then
we may choose M, as large as we please; since y, — [2| = 1and %(2) > M,,_,
on y,, it follows that u(2) — co as I' tends to the boundary.

[ >
=

Fig. 2

If lim MY = L < oo, then we must choose M, so that M, - L as
n — oo. (It follows from the convexity argument that this is possible.)
If the M, are chosen in this way, then w(2) - L as I' — |2| = 1; since
in both cases {M,} is increasing it is clear that the other conclusions of
the theorem also hold.
This completes the proof of Theorem 2.
We next state another standard result which is Brelot’s form of
the Milloux—Schmidt inequality ([4], § 1).
LEMMA 6. Let u(2) be s.h. in |2| < R and suppose that u(z) < 1 there.
Let
infu(z) <0
|z]=r

for all ;0 <r< R. Then
) o
u(2) < — tan™! ]/i (r = 2]).
T R

This lemma gives almost immediately

LeEMMA 7. Let u(2) be s.h. in |2| < 1 and let |z| < 1. Let {y,} be a se-
quence of continua in |z| < 1 on which u(z) << M, and such that diam(y,)
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> 8 > 0 for all n. Suppose that any neighbourhood N of z, meets infinitely
many of the y,. Then u(z,) < M.
Proof. Let z,¢y, be a sequence of points tending to z,, suppose
that for n > ng, [2,—%| < 3(1—|2|). Let R = min(4, 1(1—|2,|)). Let
B(r) = sup u(2) < +oo.

2]<1—3(1—|2))

We apply Lemma 6 to the function {u(z) —M} on circles of

1
B()]
radius R centred on the points z,,n > n,, and let r, denote |z, —z,|.
Since for » large enough z, will lie inside these circles, we obtain that

u(2y) < M-l———tan l/——{B

Letting 2, — 2., i.e. r, - 0, we see that
u(z,) < M.

5. Our proof of Theorem 1 is now completed by introducing the
following classification of boundary points, and investigating their prop-
erties.

DEFINITION 7. Let {, be a point of [2| = 1, and let M be given. If
for every small § > 0, the neighbourhood N,(f,) = {|z| <1{} N {|{,—2| < 8}
contains points belonging to a component of u(z) << M which has at
least one limit point of modulus 1, then we say that {, is M-barred. Here
and subsequently ‘component’ in this context means a component relative
to the neighbourhood. '

If ¢, is M-barred for some M, we say that {, is barred.

Otherwise, we say that [, is free.

We now establish results on free and barred points. We first need
another lemma due to Talpur ([4], § 1) namely

LEMMA 8. Suppose that u(2) is 8.h. in a neighbourhood N of a continuum y
and that uw(z) = K for zey. Let z,, 2, be two points of y. Then given ¢ > 0,
we can find a polygonal path joining z, to z, in N such that u(z) > K —¢
on this path.

Talpur proves this result with K —1 instead of K —e. However,
our result follows immediately by applying this result to the function

v(2) = su(2) (L —¢e) K.

The proof includes the following result, which is a deduction from
a theorem of Hayman ([1], Theorem 4, p. 193) and which we shall use
explicitly:

LEMMA 9. Suppose that u(z) is s.h. in |2| < 1 and that 2., 2, are two

3 — Annales Polonicl Mathematiei XXVI
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points in |2] < 1y << 1 at which u(2) > K. Then we can find a § = é(e, 7,)
such that if |z, —z,] << d(e, 7y), then 2, can be joined to z, by a zigzag path
[21, (1 U [C, 25] on which w(z) > K —e, and such that

(*) Il <re and |z;—{]+[25— L] < 2]2;—2y.

We show with the aid of these results

LeMMA 10. Let ¢ be a free point of 2| = 1. Then one of the three
following possibilities must hold:

(i) Cedy.

(il) u¢ %,.

(iii) There exist points in A’ arbitrarily near (. ,

Proof. We note first that u(2) is unbounded on the radius at ¢,
for if u(2) < M on this radius R, then R would belong to a component
of w < M; thus since R ends at {,{ would be AM-barred contrary to
hypothesis.

Now if M(&) = lim w(z), then M(&) > oo as & —¢, for if

z—§ radially

lim M (&) < M, < oo, then every neighbourhood N,({) contains points &,
£¢

where M (&) < M,41, and so an end of a radius on which u(2) < M, 2.
Thus { would be barred, which is again contrary to hypothesis.

Next, suppose that ue %,; then given N, we can find a neighbour-
hood N}, of { such that all components of w < M for fixed M which
contain points in N’ have compact closures in N*, or else (iii) holds.

To see this, suppose that we cannot find such neighbourhoods N{*,
NP, Then we recall that since ¢ is a free point these components have
no limit points on |z| = 1 for small enough 4; suppose that we can find
a sequence of points 2z, — ¢ such that each z, lies in a different component
K, of w<< M, in some fixed neighbourhood N for all n.

If in N these components lie finally outside any compact subset
of |z| < 1, then we can select from1 them a sequence of Koebe continua
on which 4 < M, tending to an arc of |z] = 1 which contains ¢ (possibly
as an endpoint). Choose &, and &, on this arc; then since u e €,, % is bounded
in a neighbourhood of the arc [£,, £,] and so has finite asymptotic values.
Since &; can be chosen arbitrarily near to ¢, it follows that (iii) holds.

If the components do not lie finally outside any compact subset
of |2} < 1, then a subsequence {K,} must meet the circle |2| = r, for
some 7, < 1, at points {z,} say. These points {z,} have a limit point z,
with |2,] = ;. We may apply Lemma 7 to deduce that u(z,) << M, and
from the u.s.c. of the function it follows that if 4§’ is small enough, «(2)
< M 41 in |z—2y| < ¢'; thus the component of v << M + 1 containing z,
also contains infinitely many K,, and so infinitely many z,. Since 2, - {,
it follows that { is a limit point of this component of w << M +1.
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Unfortunately, this is not enough to show that { is (M -+ 1)-barred,
for the components are defined relative to N and as N decreases the
component of v < M +1 may well split up into infinitely many compo-
nents in a smaller neighbourhood, as indicated below (Fig. 3).

Fig. 3

To overcome this difficulty, the argument must now be repeated
in some smaller neighbourhood N'; we obtain in a similar way that there
exists a point of {|z] = 1} N 6N’ which is a limit point of a component
of u << [(M+1)+(3)?] say; repeating the argument as many times as we
please, we obtain a sequence of limit points {£,} of some component of

<< M+>Y2"=M+2, with {,>¢ (n > o) and [{,| =1 for all n.

0

It follows that ¢ is (M + 2)-barred, contrary to hypothesis, so that if
neither (i) nor (iii) hold, then given N¥ we can find N, with the required
properties. |

Now choose a sequence of neighbourhoods N {** (k > 0) which are
nested and whose diameter tends to zero. Then by the above we can
find &), < &, such that any component meeting N5’ ** has compact closure
in fo,:’*"); we choose d, so that no component of ¥ < M +11in |z— | < J,
has a limit point on |z| = 1.

Choose z;¢ Ng* and 2z, in N,gg“z) such that

(a) #, and 2z, lie on the radius R and |z,| << |2, =ro< 1.

(b) u(2) = M, u(z,) > M +1.

¢ %2 m .

Z M 4]

Fig. 4

Then by Lemma 9 with ¢ = , we can find a value ¢ > 0 such that
if |84, 16, <7o<1 and w(Ey), u(L,) > K, then if |§;— {5 < o, {; and s
can be joined by a zig-zag on which u(2) > K —1.
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We now split the radial segment [z, 2,] into two classes of points,
those where %(2) > M and those where u(z) < M. The latter set is the
intersection of R with the set u < M and so consists of open intervals
of various lengths; at the end points of these intervals w(z) > M. The
component of % << M separating them is a simply connected domain
whose closure lies in Nﬁ”f , so that its boundary is a continuum, which
we can surround by an open neighbourhood lying in Né‘f , and so we may
apply Lemma 8 with ¢ = } to deduce the existence of a polygonal path =
lying in N}! and joining ¢; to {,, on which u(z)> M —4.

We now construct our asymptotic path; we consider first the ‘large’
intervals of R where u(2) < M, namely those whose length is at least ¢.
These are only finite in number, and we connect their endpoints by a
polygonal path as above on which u(z) > M —§.

On a complementary interval [a, b] of R, we can find a sequence
of points a = &, é1,..., &, =b such that }o<|&,,—&[ <o and
u(&;) = M. We then join &; to &, by a zig-zag which u(z) > M —%.
Since » is finite, it follows that a, b can be joined by a polygonal path.

Combining these two sets of polygonal paths, we obtain a polygonal
path =, joining 2, to 2, on which % (2) > M — 4 and which lies in a (4, + 9,)
neighbourhood of £.

We now choose 2z, to lie in NP*Pn R with u(e) > M+2 and
|25] = 7y, 7o<<7;<<1l. Proceeding as above, we construct a polygonal
path =, joining 2z, to z;, lying in a (d,+ @,) neighbourhood of { and on
which u(2) > M+ }.

Continuing in this way, choosing 4, -0 and p, -0, we obtain

x

a sectionally polygonal path = n, ending at £, such that u(z) - o

r=1
as 2 >, on I'. Thus leA.,.

LeMMA 11. If y is an arc of || = 1 containing no free points, then
there is a value M and a subarc y’ of y such that the set of M-barred points
18 dense on y'.

Proof. The set of all barred points is the union of the sets E, of
n-barred points for integral », and so is a countable union. If no such
arc y' exists, then y is the union of a countable number of nowhere dense
sets and so is of the first category in itself, which is impossible. Thus
one of the sets E,, must be dense on some arc y’, and the lemma is proved
with M = n.

LEMMA 12. If the set of M-barred points is dense on an arc y, and u(2)
18 unbounded near every point of y, then there exists a conltinuum I'in |2| << 1
tending to a point of y and on which u(z) - M > M.

Proof. Let ¢,, {, be distinet M-barred points on y, and let .D; and D,
be components of u < M which have limit points of modulus 1 in disjoint
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neighbourhoods of {,, {, respectively. Let K,, K, be components contain-
ing limit points of modulus 1 of the restrictions of D,, D, respectively
to the neighbourhoods N,, N, of {; and {,.

Let r,< 1 be chosen so that |2| = 7, meets both K, and K, and
let B(r,) =: sup ().

2 =1'

Let Dllr)e the domain bounded by 0K,,0K,, |2} =r, and y, and

choose z,¢ D such that
u(2o) > M, = sup{M, B(ry)}.

Then using Theorem 2 we construct a continuum I" tending to |2| =1
such that #(2) - M’ > M, on I', and %(2) > M, on I Then I" must end
on y, for otherwise it would have to cross the boundary of D and we
would have u(2) < M at such a point.

Further, I must tend to a point, for if ¢;, {; are distinct limit points
of I' with modulus 1, we choose { between them so that { is M-barred.
I" must then meet a component of v << M which has a limit point near ¢,
thus contradieting the fact that « > M, on I

Proof that ¢, c «/,. Suppose that u¢ «/,. Then there is an arc y
free of A’, so that in particular #(2) is unbounded near every point of v
by Littlewood’s theorem ([4], p. 169). If »’ is a subarc of y, and some
{ey’ is free, then u¢ ¢, by Lemma 10 since y’ is free of 4'.

If not, then by Lemma 11 we can find M and 9" < 9’ such that
the set of M-barred points is dense on y''. We then apply Lemma 12
to deduce the existence of asymptotic values at points of 4’', which con-
tradicts the assumption that ¢’ is free of A’

Thus €, « &/, and the proof of Theorem 1 is complete.

We can show slightly more, namely that instead of asymptotic
values on continua we can have a,symptotlc values on sectionally poly-
gonal paths. This is

THEOREM 3. Let u(2) be s.h. in |2| < 1. Then if u(z) >a a8 z - ¢
(Il =1) on a continuum I', there exwists a sectionally polygonal Jordan
arc min |2) < 1 ending at { on which u(2) — a.

Proof. Let I' =) y,, where y, Nnvy,., #0, and choose ¢, — 0.

n=1

Suppose that a <. oco. Let
% Supu(Z),

.u'n* =

inf zey,.

Then u, — a, u, , — ¢ and by u.s.c., y, lies in a domain D,, where
u(2) < pn+€,. Let 2,ev,_y Ny, (n>=2). Then by Lemma 8, 2,, 2,,,
can be joined by a polygonal path =z, in D, on which

u(z) = A“n,,._sm
so that u, -—e,<u(2) < pnte, on m,.
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Then »' = |J =, is the required sectionally polygonal path; = will

. n=1
end at a point provided the neighbourhoods D, are chosen small enough,
since I' itself ends at a point.

By removing a countable number of loops, the path may be made
into a sectionally polygonal Jordan arc.

Further, in view of [2], we have

THEOREM 4. Let u(z) be subharmonic in |2| < 1 and let B(r) = supu(z).
Suppose that e =r

(2) flogB(fr)dr< 0o.

Then ue sZ,.

Proof. The proof uses Lemma 1 of {2] and proceeds as ([2], Theorem 1)
with the auxiliary function v({) = log|®({)| instead of @({). Since the
maximum principle holds for subharmonic functions we obtain that
#(2) is locally bounded near y*, and so lies in %,. The result then follows
from ([2], Theorem 1)

THEOREM 5. Given ¢ > 0, there exisls wu(z) subharmonic in |2/ <1
such that

(3) B(r) < exp

&

1
(1 —r)log ——
but ud oA,. 1

Proof. The subharmonic function %(2) constructed in the proof of
[2], Theorem 2, provides such an example.

This paper and [2] form the major part of the author’s thesis, com-
pleted under the supervision of Professor W. K. Hayman. The author
would like to thank Professor Hayman for his generous help and the
Science Research Council for a grant while this research was undertaken.
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