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On the total curvature of a closed curve

by M. RocHowskKI (Katowice)

1. Preliminaries. Let
(1) ¢: C—>E"

be an imbedding of the closed curve
(2) C={s,modL}, L>0

in the Euclidean space E". The function ¢ is supposed to be of class C™.
By ¢(8)e,¢6; ... e2 we denote the Frenet frame of the curve at the point
¢(s) and by ky, k,, ..., k,—, the consecutive curvatures of ¢(C). Then the
Frenet formulas can be written as

de
(3) T:=‘ p—1€p—1+ kpepi1 ko=Ikn=0,p=1,2,..,n.

Fenchel [4] shows that for ¢(C) C E®* we have

(4) [ kyds > 2m
C

and equality holds only for convex plane curves. Borsuk [1] proved (4)
in the case of ¢(C) C E". In the same paper the author raises the question
whether or not

(5) [ kyds > 4n
C

holds for each knotted curve ¢(C) C E*? This problem was given a positive
answer by Fary [3] and Milnor [5].

Fenchel’s proof is synthetic and other proofs are based on a con-
struction of a sequence of polygons inscribed in ¢(C). In this note we
give 2 new proof of (4) if ¢(C)C E™ and (5) if ¢(C)C E® in which the
polygonal construction is omitted.

2. Proof of the inequality (4). Let B, be the normal bundle of
the curve (2) induced by the imbedding (1). This means that

B,::(s,v)]v-%=0},
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where »(s,1) is an arbitrary unit vector normal to ¢(C) at ¢(8). The
vecetor » can be written as

"
a 2 \ | ay2
(6) #(3,1) = e, t= (1, ™, D(EF=1 (a=2,..,n).
L

(7) I B, K"
be the mapping defined by
(8) f(s,1) = @(8)+ev(s,t) = @(s)+ el%,, &= const.

If |e| is sufficiently small, then (8) is an imbedding. First we prove
that (8) is an immersion for small [e].

In fact, if we take, for example, " — +V 1— ()*— ... (" '), then

0 _ 09 | 0% 99 e
os  ds -+ et ds _ ds +th( ka-—lea—l+kaea+l)7

op

——s(e —i—a—tfe) (a=2 n—1)
at ol T '

The coefficient of [¢e; ... €,—1] in the development of the vector
product

Op d¢ op
os ot* o™ !
s
(9) 21— etk,) .

Because C is compact, the curvature k,; is bounded and (9) is different
from zero for sufficiently small le]. This proves our statement.

Suppose, to the contrary, that the mapping (8) is not one to one
for each &. Then we can choose such convergent sequences

(Sky V%), (8%, %) € B, ,
that

(10) Tu(Sk,y th) = fils%, t%)

if &; tends to zero with £ — oo, and fr denotes the mapping (8), in which
e = ¢&x and vy = v(8k, k), vi= v(s¥%,t%), and if si—sg, sk—sy. Then fi
tends to ¢ and we have
(11) ?(s0) = @(s0) .

There follows s;=— s;. Indeed, s; # sy and (11) would contradict
the fact that ¢ is an imbedding. On the other hand, (8) is an immersion
for small |¢|. This means that for small |¢| and é > 0 the points f(s’, t'),

f(s'",t"") are distinet for 0 < |s'—s’'| < é and all t’,t"”". But this contra-
diets (10).
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From now on we suppose that ¢ is a constant for which (8) is an
imbedding.
The imbedding (8) leads to the spherical mapping

112) g: B,—>8""
defined by the formula
(13) (8, v)—>p(8)+ev(s, t)>v(s,t).
From (6) we have
Av = U'deg+ €. A" = 1°( —ko—1€a—11 ka€at1) A3 - €odi” .
In 8" % we introduce the spherical coordinates
1> — cos 6,
t = sin6°sin0° ... sin6* ’cos6*, a=3,..,n—1,
"= sin6..:in6*", 0<6P<x,p=2,..,0—2, 020" 2.
Then we can write

v = 6y = 1% —Fam160-1 + kaas1)ds .

dgv & :—;ﬁea(wﬁ . B=2,..,n—1,a=2,.,n.

Hence, for the vector product of the above vector we have

[dlvdzv “ee dn..11’]

— kysin" %6 cos 6%sin” *6° ... sin 6" e, dsd 6°...d6" 1, a2, .., m.
Let doy denote the surface element of S*. Then
Aop_y = |[dvdyv ... dp_1v]| = k,sin™ " 0% cos 0%|don_sds df’ .

We assume do, = 1.

The point (s,, ¥,) € B, 1s said to be a critical point of the mapping (12)
if its Jacobian determinant vanishes at this point. By Sard’s theorem [6]
it is known that the image of the set of critical points is of measure zero
in 8""'. The Jacobian determinant vanishes if and only if the scalar
product »,-d*p/ds® = k,sin 6*cos 6* vanishes. On the other hand, the point
(89, ¥) € B, is said to be a critical point [7] of the real-valued function
vo @(8) (v, = const) if vodp = 0. The point is said to be a degenerated
critical point if »,-dp = v d’¢ = 0. Thus, if (s, %) € B, is a degenerated
¢ritical point of »,-¢(s), then it is a critical point of (12).

Hence, for each vector » e §° ', except a set of measure zero, the
function v-p(s) has only non-degenerated critical points. From the Morse
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equality [7] it is known that there are an even number of such points
for each vector ».

Now let m = m(t', ..., t") denote the number, divided by two, of
uon-degenerated critical points of the function »-¢(s) for each vector
v=v(l', ..., t") € E" (except a set of measure zero). To each critical point
of C there corresponds for the same vector » two critical points of B,.
Hence the sphere 8" is covered by the mapping (12) 2m times. Therefore

| ksin® 6% cos 0% do,_ydsd6® = [ 2mdon_, .
By

Sn-1

i m(', .., t") = my, (=1), then for » > 2 we can write

L =
J %yds | sin” *6*lcos 6%@6° | don-s = 2m, | do,..,,
0 0 SR—3 Sn-1
and for »n == 2
| kyds | |cos 62(d8? = 2m, | do, .
0 1]

N2

Denoting by w; the surface area of S8* and using the equality
Wn_1/wn—3 = 2n[n—2 we have
L
J k,ds = 2mtm, .
0

This proves (4).

8. The imbedded curve ¢(C) C E? is said to be knotted if there exists
no homeomorphism h: E*—-E*® transforming ¢(C) onto a plan circle.
Tne quality (5) will be proved if we show that the condition m, > 2
(except a set of measure zero of vectors » ¢ S%) is necessary for a curve
to he knotted.

Suppose, to the contrary, that there exists a vector » for which the
function »-¢(8) has only two non-degenerated critical points, i.e. my = 1.
Since »-d’p/ds® is continuous, a small change of » leaves m, constant.
Therefore we can assume that »-@(s) has only non-degenerated critical
points. Let s;,s, ¢ C denote the critical points of ‘»-¢(s). These points
divide C, just as ¢(8;), ¢(8;) € p(C) divides ¢(C), into two arcs l,, I, which
have only the end-points in common. On each of this arcs the function
v-@(8) is strictly monotone. Therefore each plane vz = ¢, where « ¢ E®
and v-@(s) < ¢ < v-¢(8), intersects ¢(C) at exactly two points. These
points we join by a line segment and construct its symmetry line. Through
@(8,), ¢(8;) we drew lines which are the limit positions of the symmetry
lines. Since ¢ is a regular function, such lines exist. These two lines we
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take as the boundaries of two halfplanes H,, H,, such that H, lies in the
halfspace

H,C{z e B*|vz > vp(8,)},
H,C {x e B?|lvz < vp(sy)} .

The orientation of E* and the vector » determines the orientations
of all planes vz = ¢, — oo < ¢ < oo. Therefore, since C is compact, we
can choose such a finite open covering by intervals {U:}i<i<i of the
closed interval [v-¢(s,), v-¢(s,)] that for each ¢ and arbitrary ¢, ¢’ ¢ Uy
the absolute value of the angle between the projection of the positively
oriented symmetry line of v = ¢'’ onto the plane »z = ¢’ and the posi-
tively oriented symmetry line of the last is less than =/2. B

Now we define a homeomorphic mapping 4: E*—>E® in the following
manner: In E® we choose such a coordinate system that ¢(s,) = (0, 0, 0),
the limit line of symmetry lines which passes through ¢(s,) is identical
with the coordinate line 0x! and »x = »-@(s,) is the 0x'2? plane. Assuming
Uin Ui #9 (1=1,2,..,l—1) let »-¢(s,) ¢ U; and suppose that & is
defined for k= 1,2,..,1—1 < 1—1 in such a way that the image of

i-1
{x e Bvr = ¢}, ¢ e | U; is the plane itself and the image of the sym-
j=1 .

metry line of this plane is the line 22 = 0,2 = ¢. If ¢e U;_; ~ U; and
e € U; is arbitrary, then there exists such a rotation of the planc
{z ¢« B*lvx = ¢’} onto itself about an angle —x/2 < a < =/2 that the sym-
metry line in {z ¢ E®jvz = ¢’} assumes a position parallel to the symmetry
line in {# ¢ B’|vz = ¢} after it. Up to a translation of {z ¢ E*»2 = ¢’} onto
itself we may assume that the symmetry lines corresponds by orthogonal
projection of this plane onto the other. Therefore, since & is defined for ¢,
it can be extended for the values ¢’ € U; by setting that the image of
{z € E*|lvxz = ¢’} is the plane itself with the same orientation and the image
of the symmetry line is the line #*> = 0, 2® = ¢’. Thus, by induction, k is
defined for 1 <4 < l. The extension of h to the whole space is now easy.
Namely, since & is defined for the limit lines of the symmetry lines which
pass through ¢(s,) and ¢(s,), it is defined for each plane {# ¢ F’lvx = ¢}
¢>v-p(8) or ¢ < v-@(s,) by setting that the image of the intersection
of the plane {z ¢ B*lvz = ¢} with H, or H, is the line 2* = 0, #3 = ¢ (the
plane {r ¢ F®|vx = ¢} is displaced as above into itself).

Under the mapping h the ares l,,l, are mapped onto arcs he(l),
hp(l,) which lie on different sides of the plane 0z'z® and each planc
@ e EPlve = c}, v-@(s,) < ¢ < v-9(s,), intersects hg(l) v hp(l) = hp(C) at
exactly two points. The orthogonal projection p of hy(C) onto the plane
07'2® can easily be extended to a homeomorphic mapping p: £° -E*
and phe(C) is a closed plane curve homeomorphic with the circle.
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Thus the assumption that there exists a direction » for which »-¢(s)
has only two non-degenerated critical points yields a contradiction.

Remark. If ¢(C)C E" does not lie in a plane, then there exists
such a vector » that »-g(s) has at least four non-degenerated critical
points. This fact can be shown by an argument similar to that used in
the proof of lemma 1 in [2]. From this it follows that

L

| Ryds > 2,
0

if ¢(C) ¢ E*, and equality in (4) holds only for the convex plane curves.
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