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On the continuous dependence of local analytic solutions:
of the functional equation in the non-uniqueness case

by J. MATKOWSKI (Katowice)

In this paper we shall study the problem of continuous dependence
on given functions of local analytic solutions of the equation

®(2) = H(z, P[f(2)]),

where f(z2) and H (z, w) are given functions and @ is the required function.
We consider the sequence of equations

(1) P(2) = H,fz, P[f.(2)])
supposing that for n = 0,1, 2, ... the following hypotheses are fulfilled:
(I) f.(2) is analytic in the disc |2| <7, f,(0) = 0 and

i (0) <9 <1;

(IT) H,(2,w) is an analytic function of two complex variables.

(2, w) for |¢| <, |w|< R and H,(0,0) = 0;

(ILI) f,(2) tends to f,(2) and H, (2, w) tends to Hy(z, w) uniformly
for |z| < r, |w| < R.

By (I) and (III) there exists a positive integer p such that

, oH,
(@) Lf(@)F " (0,0)

It follows by Smajdor’s theorem [3] (also [1], p. 188) that if hy-
potheses (I) and (II) are fulfilled, then every formal solution

<1 for'n/=0,1,2,...

L1 84 (0)
(3) D, (z) = ,, x - 2K
=]

of equation (1) has a positive radius of convergence. Moreover, there
exists exactly one formal solution iff

oH,
ow

IV)  [fo(@)F>2(0,0) #1 for k =1,2,...,p—1.
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In [2] the following theorem on continuous dependence has been
proved.:

THEOREM I. Under assumptions (I)-(IV) each of equations (1) for
n =0,1,2,... has exactly one solution P,(2) analytic in a common neigh-
bourhood of the origin and D,(z) tends to D,(z) in this neighbourhood.

If hypothesis (IV) is not fulfilled, then either equation (1) has a one-
parameter family of analytic solutions or there exist no analytic solu-
tions (cf. [3], also [1], p. 188).

In this paper we consider the problem of continuous dependence in
the case where (IV) is not fulfilled for some n=.

1. We define the functions H, ,(z, w,w,, ..., w,) by the recurrent
relations

oH, . (OH,
(4) H, (2w, w) = e + fa(2) W'wl,
0H, , o0H H,
Hyppey1 (25 Wy W1y oeny Weyy) = az’k +fa(2) ('—GJ'k W, +...+ wk'k wk+l).

Denote by O™ the Cartesian product of complex planes C and by D
‘the set

D = {(z,w): |z| <7, w] < E}.
We have the following two lemmas (cf. [3], also [1], p. 188):
LEMMA 1. Let hypotheses (1) and (1I) be fulfilled. Then the expres-
sions H,, are defined and analytic in D xC*, and we have
H, (2, W, Wiy ooy W) = Gy (2, Wy 01y .ny W)+
H

0H,
5w (2, w)w,, k=1,2,...,

awhere G, is an analytic function in the set DX C* ',

LEMMA 2. Let hypotheses (1) and (II) be fulfilled. If (3) is a formal
.solution of equation (1), then we have

(6) q)gt)(o) = Hn,k(07 0’ ‘D;;(O)’ 1oy d’&"’(O)), k= 1’ 2’

By induction from (III) and (4) we obtain

LemMmA 3. If hypotheses (I)-(111) are fulfilled, then H, , tends to H,,
and @, , tends to G,, uniformly in D XC* resp. DxC*'.

Lemmas 1 and 2 together with W. Smajdor’s theorem imply

LeMMA 4. Let hypotheses (I) and (II) be fulfilled and suppose that
there exisls a positive integer k = k(n) such that
0H,
ow

(5) + [fal2)1*

{7) [fa(0)]¢ (0,0) =1.
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Then equation (1) has an analytic solution of form (3) if and only if
(8) G40, 0, D,,(0), ..., DFD(0)) =0,

where the numbers @, (0), ..., DFV(0) are uniquely determined by the
condition

. eH,
@) ¢$:’(0)(1— fL ()T

ow

(0, 0>) = G40, 0, BL(0), ..., BLI(0)),

s =1,2,...

If (7) and (8) are fulfilled, then there exists a one-parameter family
of analytic solutions of equation (1) depending on the parameter t = @ (0).

Now we prove

LEMMA 5. Suppose that hypotheses (I)-(IIL) are fulfilled and that
for n =1,2, ... relations (7) hold with k(n) = k(1) =k (i.e., k i8 inde-
pendent of n). Then (7) holds for n = 0. Moreover, if we assume that

(10) &R0y =1t; n=0,1,2,...; limt, =1,
-~ n—>00
then we have
(11) lim &®(0) = & (0), s=1,2,...
n—o0 \

Proof. From Lemma 3, (9) and (10) we obtain relation (11) by
induction. Now in view of (III) and Lemma 3 we obtain relation (7) for
% = 0. This completes the proof.

LEMMA 6. Suppose that hypotheses (I)-(III) are fulfilled and that
Jor every m,m =1,2,..., there exists a positive integer k(n) such that

0H
! k(n) -—-n = M
(12) fa@H® =720, 0) = 1;

then there exists a positive integer n, such that k(n) = k(ny) = k for n > n,
and

, oH
(13) [fo(@)T == (0,0) = 1.
Proof. According to (III) there exists an A > 0 such that
‘6;:: (0,0){<A forn =1,2,...

Hence and on account of hypothesis (I) we obtain

o0H
£ (n) n
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1 =

(0, O)l < AHm,
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Since 0 < ¥ < 1, the sequence k(n) is bounded. If the lemma were
not true, then there would exist two positive integers I and m, I # m
and two sequences of positive integers m, and I, such that

GHm
[f;()]' i, —=(0,0) =1, [fm(O)"——=

0,0) =

Letting v > o in the above relations, we obtain

0H,
Lf 0(0)]l

[fo(O)I™ =1.
Hence [ f{,(O)]"”‘ = 1. This contradicts hypothesis (I) and the lemma
is proved.

2. In this section we consider the problem of continuous dependence
supposing that in the sequence of equations (1) some have a solution
containing the parameter.

If relation (IV) holds for » = 0, then it follows by (III) that (IV)
holds also for » > N, i.e. equation (1) has for » > N exactly one solu-
tion &, (z) having form (3) and analytic in a neighbourhood of the origin.
Then it follows by Theorem I that the sequence ®,(z) coverges to P,(z)
uniformly in a neighbourhood of the origin.

Now suppose that (IV) is not fulfilled for » = 0, i.e. that there exists
a positive integer & such that relation (7) holds for n = 0. According
to Lemma 4, if for n = 0 there exists an analytic solution of equation (1),
then it depends on the parameter ¢t = ®{%(0).

Evidently, it is sufficient to consider the following two cases.

A. For every n,n = 1,2, ...,equation (1) has a one-parameter family
of analytic solutions, i.e. relations (7) and (8) hold for every n» with
k = k(n).

B. For every n, n = 1,2, ..., equation (1) has exactly one analytic
solution, i.e. (IV) holds for » =1, 2,...

We shall prove the following

THEOREM 1. Let hypotheses (I)-(III) be fulfilled and suppose that
case A occurs. Then equation (1) has for n = 0,1,2,... a one-parameter
Sfamily of analytic solutions D,(z,t), where t is a parameter. These solu-
tions exist in a common neighbourhood of the origin, independent of n and 1.
Moreover, if we fiz t =1, for n =0,1,2,... such that
(14) lim t,=1,,

n—00

then the solution P (z) ‘@ n(2, 1) converges to Dy(z) = Dy(z,t,) uniformly
in this neighbourhood.
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Proof. It follows by Lemma 4 that relations (7) and (8) hold for
n=1,2,... By Lemma 6 there exists an n, such that for » > n, we
have k(n) = k(n,) = k. It is no restriction to suppose that n, = 1. Now,
according to Lemma 3 and (III) relations (7) and (8) hold also for n =0
(k(0) = k), which means that equation (1) for n = 0 has a one-para-
meter family of analytic solutions in a neighbourhood of the origin. Evi-
dently, we have k < p, where p is defined by (2), and in view of Lemma 4
we can write '

(15) djn(z’ tn) =Pn(z)+zp¢n(z)7
where
OO L b,
(16) Po(e) = ) - R,
&=1
8#k

@, (2) is analytic in a neighbourhood of the origin and ¢,(0) = 0. It follows
by Lemma 5 and (14) that P,(2) converges to P,(z) uniformly on every
compact set contained in €. Thus for the proof of our theorem it is suffi-
cient to show that ¢,(z) converges to ¢,(2) uniformly in a neighbourhood
of the origin.

Let us define the functions

H, (2, P, [f.(2)14 [fn(2)]Pv) —P,(2)
P '

a7 (2, 0) =

By (I) and (II) the partial derivative

0H,
Jw

oh, F@) Y
a8 Geeo) =S en (I, w - P@H L EP,

is analytic function in a neighbourhood of the point (z, ») = (0, 0).
Next we put

(19) 9(2) = H,(z, P, [fu(2)]) —Pr(2).
We shall show that
(20)
99 (2) = H,; (2, Pulfa(2)], Polfu(2)], -y PO fa(2)]) =P (2).
In fact, we have by (4)

0H, 0H, , , ,
o5 B Ealfa(@)))+ - (2 Pulfu()]) fu(2) Pl ful2)] =P (2)

= H,,(2, P,[fn(2)], P, [f4(2)]) —Pr(2).

g (2) =
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Thus (20) holds for I = 1. We assume that (20) holds for an I > 1.
Hence we get

o0H
g (e =<t +f,,(>( ot pt L]+ +0H"'

g+ [fn(z)])—

— P (2)

= Hp11(2) Polfa(2)]y Polfal@)], -y PEFVf(2)]) =P (2)
and (20) is proved.
From (15) we obtain P{(0) = o (0),1 =1,2,...,p and &% (0)
=1,. Now, putting 2z =0 in (20), we have by (6)

g9 (0) = H,,{0,0, &,(0), ..., BV (0))— B (0) = 0

for 1 =1,...,p, 80 h,(2,0) is an analytic function of z at the origin.

By (18) we have
- oh,
ol ) = f -

thus %,(z, ) is an analytic function in a neighbourhood of the point
(0, 0). Moreover, we have

u)du—+-hy(2,0);

(21) ha(0,0) =0
and ¢,(2) defined by relation (15) satisfies the equation
(22) 9(2) = hy(z, 9[fn(2)])-

Let us take an arbitrary R, > 0 and let |v| < R,. Since P,(0) = f,(0)
= 0, there is a ¢, >0, o, <, such that

R
Plfo@)ll <5 and  Ifa@)P < for 2] < o,

1
In virtue of the uniform convergence of P,(z) to P,(z) and f,(2)
to f,(z) there exists a positive integer N such that

for 2| <o, n>=N.

R
1Pn[fn(z)]1 <? and lfn
7/
From the continuity of P,[f,(2)] and f,(z) there exists a o, >0
such that these inequalities are valid for » = 1,..., N—1 and [?| < o,.

Taking 7, = min(e,, 0,) we have

R
IPn[fn(z)]+ [f'n(z)]p'vl < o

2R
for 2|<r, W<R, (n=0,1,2,..)) and, moreover,
(23) k.(z,v) tends uniformly to hy(z,v) for |2/ <7, v|< R
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Funetions 4, (2, v) fulfil hypotheses (II) and (III). Since by (18)
we have

= |[fa( 0)]”

o,

h,(z, v) satisfies also hypotheses (IV). Thus ¢,(2) is the unique analytic
solution of equation (22) such that ¢,(0) = 0. We may apply Theorem I
and this completes the proof.

In case B we have the following

THEOREM 2. Let hypotheses (I)-(ILI) be fulfilled. Suppose that equa-
tion (1) has for » = 0 an analytic solution Dy(z,1t) containing the para-
meter t (i.e. relations (7) and (8) hold for n = 0) and suppose that equation (1)
has for n = 1,2, ... exaclly one analytic solution @D, (2) in a neighbourhood
of the origin. Then the sequence D, (z) converges uniformly in a neighbourhood
of the origin if and only if there exist a limit

G.:(0,0,2,(0),..., ¢ (0
(24) ¢ = lim “"( n{ )’ n )), k = k(0).
e [fn(O)] (0 0)

Moreover, if limit (24) exists, then D,(2) tends to D,(z) = ¢o(z ¢)
uniformly in a neighbourhood of the origin.

Proof. If &,(2) converges uniformly in a neighbourhood of the

origin, then the sequence @{)(0) converges as m — oo. By relation (9)
and (7) we have

G, k(O 0, &, (0), 455.,""”(0))
— [f'n(O)]k

P (0) =

This completes the proof of the necessity.

Now suppose that (24) holds. Let us write the solution @,(2) in
form (15), where

P

2 (0)

Pn(z)=2 g, m=1,2,..,
8$=1 -

and

2y a0 (0 e
P,(2) = Z °s'( )z’—l—ﬂz".

8=1
s=k

It is seen by (9), Lemma 3 and (24) that @ (0) tends to D (0)

for s # k and that ®{¥)(0) tends to ¢. Thus P, (z) tends uniformly on every
compact set in ¢ to P,(2). Now, similarly to the proof of Theorem 1,
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we can prove that ¢,(2) tends to ¢,(2) uniformly in a neighbourhood
of the origin. This completes the proof.
ExaMpLE. Take the sequence of equations

(25) D(2) = (2—1/n)P[(3—1/n)2]+2/n, n =1,2,...
Here
fn(O) = (%'—1/'”’)27 Hn(zy 'W) = (2—1/%)%0—{-2/%
and

(%)h@ wO)(rﬂmw4m<L @1 (0, 0) = 1/n.

Thus, for every », » =1, 2, ..., equation (25) has exactly one ana-
lytic solution @, (2) in a neighbourhood of the origin. Let us note that
Jfn(2) tends to f,(2) = 2/2 and H, (2, w) tends to Hy(z, w) = 2w, uniformly
on every compact subset of ¢, and the limit equation (n = 0) has the
form '

(27) D(2) = 29(2/2).

Hence we obtain

fum (00)—1 Gy,(0,0) =0,
i,e. equation (27) has a one-parameter family of analytic solutions @,(z, 1).
It is easy to verify that @,(z,t) = t2. By (26) we have
0
¢ = ]j.m Gn.l (0’ ) — g.

" 1—£,(0) )

According to Theorem 2 @,(2) tends uniformly in a neighbourhood
of the origin to @(z,%) = 2z,
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