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On the tangent bundle and cotangent bundle
of a differential space

by HANNA MaTtuszczyk (Wroclaw)

Abstract. In the paper the concepts of tangent bundle (t.b)) and cotangent bundle (c.b.)
for MacLane-Sikorski's differential space are discussed. There exisls a possibility of indexing
tangent spaces formally by points; this leads, in some cases, to too large spaces resulting as t.b.
or cb. Here, by a slight modification of Sikorski’s concept of tangent space, we obtain a
situation in which the tangent spaces at two points are distinct iff the points are functionally
distinguishable. Next we introduce a modified concept of t.b. and c.b. and examine the condition
of smoothness of vector fields and 1-forms in the terms of t.b. and cb.

The concept of a differential space is due to R. Sikorski [5] and S.
MacLane [1]. These both authors have considered tangent vectors to a
differential space (M, C) at a point p of M as R-linear mappings v: C —> R
satisfying the Leibniz rule v(x-g) =a(p)v(Bf)+B(p)v(a) for a, feC. This
gives rise, in a natural way, to the definition of the tangent space (M, C), to
(M, C) at p.

In the present paper we introduce a slight modification to the original
definition of a tangent vector at a point. We regard a tangent vector at a
point p as a mapping v: C(p)— R fulfilling the conditions v(x+ f)
=v(@)+v(p), vica) = cv(a), v(e pf)=a(pv(B)+B(pv(a) lor a, feC(p),
ceR, where C(p) is the set of all real-valued functions C-smooth at p, i.e.
C(p) is the union of all sets C,, where peAe1. and 1. stands for the
weakest topology on M making all functions in C are continuous. We thus
get a vector space T,(M, C) with the natural definitions of addition and
multiplication by real numbers: (v+ w)(a) = v(a)+w(a), (a-v)(a) = a-v(a) for
ae€C(p), where v, w are arbitrary tangent vectors treated as mappings C(p)
— R and a is any real number. We have a natural isomorphism i,: T,(M, C)
—(M, C), given by the formula i,(v)(2) = v(a) for v of T,(M, C) and aeC.

The above modification allows us to connect the Hausdorff condition
for the topology 1. with the following one:

(*) T,(M, C) # T,(M, C) whenever p # q (see Proposition 1).
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Condition ( *) is of non-topological nature, it concerns the indexed set
(7,(M, C); pe M) of vector spaces. Moreover, there is one more advantage:
the tangent spaces T,(M, C) and T,(M, C) are disjoint il and only if they are
different.

For a linear space V we will denote its (linear) dual by V*. A mapping
= which to every tangent vector v to (M, C) assigns a point pe M such that v
is an element of T,(M, C) will be called a projection of the tangent bundle of
the differential space {M, C). It is easy to see that such a mapping need not
be uniquely determined by (M, C). For the proof of the following
Proposition see [2]. '

ProprosITION 1. The following conditions are equivalent:

M (M, C)=T,(M, C);

(D T,(M, C) and T, (M, C) have a common element ;

(I1) (T,(M, O))* and (T, (M, C))* have a common element;

(IV) C(p) = C{g);

(V) the set of all neighbourhoods of p in topology 1. is equal to the set of
all neighbourhoods of q in t.;

(VD) a(p) =al(g) for acC.

ExaMmpLE. Let us take M = R and C = the smallest differential structure
containing the set {R>p+|p|}. Then we have the set of all neighbourhoods
of p in topology . equal to the set of all neighbourhoods of —p in 1. Thus
T,(M, C) = T_,(M, C) and so the set of all = such that for any tangent
vector v we have v in T, (M, C) has cardinality 2.

As a corollary to Proposition 1 we have

ProPoSITION 2. For every projection m and m, of the tangent bundle of
(M, C) and for any aeC we have aom =aom,.

Hence it follows that we have a correct definition of a differential
structure C' on the set of all tangent vectors to (M, C) as the smallest
differential structure containing the set

{aom; aeC}ufa,; aeC},

where a,(v) = v(a) for all tangent vectors v (cf. [3]). Thus we obtain a
differential space T(M, C) whose underlying space is the set of all tangent
vectors to (M, C) and whose differential structure is C’. The differential space
T(M, C) will be called the tangent bundle of the differential space (M, C).

It has been proved (cf. [4]) that if (M, C) is a differentiable manifold, i.e.
a differential space locally diffeomorphic to a Euclidean space, then the
tangent bundle of the differcntial space (M, C) coincides with the tangent
bundle of the differentiable manifold.

Another interesting corollary to Proposition 1 is the following one
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concerning the Hausdorff axiom for the topology induced by the set of real
functions on M.

ProposITION 3. For any set D of real functions on M the topological space
(M, tp) is Hausdorff if and only if there exists only one projection of the
tangent bundle of the differential space (M, C), where C is the smallest of all
differential structures including D.

Proof. We have (cf. [7]) ) = 7. Assuming that there exist two distinct
projections n and ©, we find a tangent vector v belonging to T,,,(M, C) and
T, (M, C) simultaneously, where n(v) # =, (v). Thus by Proposition 1 we
have C(p) = C(p,) with p # p,. Hence it follows that every neighbourhood of
p in topology 7 is a neighbourhood of p,, and vice versa, which ends the
proof.

Any mapping X which assigns to each point pe M a vector X(p) in
T,(M, C) is called a vector field on (M, C). A vector field X is said to be
smooth if and only if for every a € C the function dya defined by the formula

(0xa)(p) = X (p)(@) for peM
belongs to C.

PropPoOSITION 4. Any vector field X on (M, C) is smooth iff it defines a
smooth mapping X: (M, C) - T(M, C).

Proof. For any aeC and any vector field X on (M, C) we have a,0X
= dxa, and for every point pe M we have (a on)(X (p)) = a(g), where X (p) is
in T,(M, C), g =n(X(p)). On the other hand, X(p) is in T,(M, C). Thus
7,(M, C) = T,(M, C) and a(p) = a(q). Therefore aono X = a. Hence it fol-
lows (cf. [7]) that the smoothness of X viewed as a vector ficld in the
previous sense yields the smoothness of the mapping X: (M, C) - T(M, ().
The converse implication is obvious.

The set of all smooth vector fields on (M, C) will be denoted by
(M, Q).

To define the cotangent bundle of a differential space (M, C) we first
consider the set of all elements of the spaces (T, (M, C))*, where pe M. Such
elements are said to be tangent covectors of (M, C). A mapping n of the set
of all tangent covectors w of (M, C) into M such that w is an element of
(Toom (M, O))* is said to be a projection of the cotangent bundle of (M, C).

Similarly to Proposition 2 we can prove

ProposITION 5. For every projection m and m, of the cotangent bundle of
(M, C) and for any aeC we have aon =aom,.

We have a correct definition of the differential structure C'* on the set

of all tangent covectors of (M, C) as the smallest differential structure
containing the set

{aom; aeClu{X; XeZ (M, C)},
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where n is a projection of the cotangent bundle of (M, C) and for every
smooth vector field X on (M, C) and for any tangent covector w we write

(1) X(w) =w[X(z(w)].
The real-valued function X is, obviously, independent of projection z. The
differential space T*(M, C) whose underlying space is the set of all tangent
covectors of the differential space (M, C) and whose differential structure is
C'* will be called the cotangent bundle of (M, C).
A real-valued function o defined on the set of all tangent vectors to
(M, C) and linear on all vector spaces T,(M, C), peM, is said to be a
- differential 1-form on (M, C). A differential 1-form  is said to be smooth if
and only if for any smooth vector field X e 2 (M, C) we have woXeC.
ProPOSITION 6. Any 1sform w on (M, C) is smooth if and only if it defines

a smooth mapping
(2 @a: (M, C)—>T*(M, O),

where @(p) is the restriction of w to the vector space T,(M, C) for pe M.

Proof. Let w be a 1form on (M, C). Suppose that @ is smooth. Let X
be a vector field on (M, C). Then for any pe M we have

X(@(p) = d([X (n[6(p])] = (X (@),

where

3) q = n(d(p).

Then &(p) is in (T,(M, C))*. By (3) @(p) belongs to (T (M, C))*. Then
T,(M, Cy= T,(M, C) and by Proposition 1 we have a(p) = a(q) for aeC.

Hence it follows that X (p)(a) = (0xa)(p) = (0x2)(q) = X (q)(a) for aeC.
Therefore X (p) = X(q) and

4 X(a(p) = o (X (p)-
Thus
) Xod=woX.

By the same argument we have a[n(®(p))] = «(p) for aeC. Therefore
(cf. [6], [7]) the mapping (2) is smooth.

To prove the inverse assertion assume that the mapping (2) is smooth
and take any pe M. Assuming (3) we have @ (p) as an element of (T, (M, C))*
and of (T, (M, C))'. Thus by Proposition 1 we have (VI). Therefore we get (4)
for any smooth vector field X and any pe M; in other words, (5) is satisfied
for any such vector field X. Hence it follows that woXeC, because
XodeC. This ends the proof.
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