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The radius of close-to-convexity of V, (g)

by Prakasn G. UMmarani (Bangalore)

Abstract. Let V,(¢) denote the class of functions f(z) which are analytic in the unit
disc E = {z: 2| < 1}, normalized by f(0) = 0 and f'(0) =1, f'(z) # 0 in E, and satisfying
the condition
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for z = re” in E, where k > 2 and 0 < ¢ < L. In this paper we determine the sharp radius
of close-to-convexity of V(g).

Let V,(¢) denote the class of functions f(z) which are analytic in the
unit disc E = {z: |z] < 1}, normalized by f(0) = 0 and f'(0) =1, f'(z) # 0
in E, and satisfying the condition
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where k > 2 and 0 < g < 1.

When ¢ = 0, V,(g) reduces to the well-known [4] class ¥, of functions
of boundary rotation bounded by krn. The class V,(g) was introduced and
studied by Padmanabhan and Parvatham [5]. In this paper we continue its
study; in particular, we obtain the sharp radius of close-to-convexity of the
class V,(g), thus generalizing an earlier result due to Coonce and Ziegler [1].
We determine this radius using techniques similar to those employed by
Krzyz [3].

In [2], Kaplan has shown that a function f(z) regular in E and
satisfying f'(z) # 0 in E maps |zl = r < 1 onto a close-to-convex curve if
and only if

2 arg z,f'(z;)—arg z, f'(z,) = —nm,

for all z, and z, satisfying |z,| = r, z; = z;€*, 0 < § < 2r. Thus the radius
of close-to-convexity of V(@) is the largest value of r for which (2) holds
for all f(z)e V(o).
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The following results due to Padmanabhan and Parvatham [5] will be
useful in the proof of our theorem.

LEMMA 1. The radius of convexity of Vi(@) is the least positive root
of the equation

(3) 1-k(l—g)r+(1-29)r* = 0.
The result is sharp.
LEMMA 2. Let f(z)e Vi(¢) Then

(4) larg f’(2)] < k(1—g)sin™"[z[.

The result is sharp.
THEOREM. Let r, be the radius of convexity of V, (o),

oy 1+(1=29)¥
= 1 <
6, = 2 cos ki—or 0<6, < 2n,
and
(5) 4()=0,+2(1-pg)tan™! —ﬂ -
e e 1—r2 cos 6,
. 2(1—cos 8,) |
- _ 1
k(1=g)sin {r[ 1-2r2 cos 90+r‘} )
Then the radius of close-to-convexity of V,(@) is the unique root r, of
the equation A(r) = —m in the interval (ry, 1).
Proof. Let
ar,8) = infarg 2222 rye o),
z, f'(zy)

where z; and z, are any two points satisfying |z, = r < 1 and z, = z,€",
0 < @ < 2rn, and the argument is chosen to vary continuously from the
initial value zero.

Let f(z)e V,(g). Define F(z) by

A oz+zy
/ ( 1+2,2 )
fz)A+2, )20 707

(6) F(z) =

Padmanabhan and Parvatham [5] have shown that F(z)e V(g).
Let wy, = (z,—2,)(1 =%, z,). Then

f(z3) [ 1-2,2, ]2(1_0)

P00 = ey [ ToRp
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Hence it follows that

)] arg 22 2 S @) _ arg 2 [—l k2l

21-9)
] +arg F'(wq).

2, f'(z1) - e zy L 1-2,z,
We have
3 2(1—cos @) )12
® bl = | {3 g |
and
z | 1=lz)* P47 - r? sin 0
9 | — =0+2(1—g)tan™ ' | ———|.
©) arg 2, [l—z’lz2 +2(1-otan 1-r*cos@
Therefore, using (4), (8) and (9) in (7), we get
r? sin 0
= _— —l e ————— -
(10) 4(r,0) = 0+2(1—p)tan [ l—r’cosB:I

. 2(1—cos 6) 12
_ _ 1
k(1=¢)sin {r|:l—2r2 cosB+r‘:' '
Further, there exists a function f(z) in V,(¢) for which the infimum
defining 4(r, 6) is actually attained at prescribed points z,, z, and is equal

to the expression on the right of (10). To see this, let g(z) be the function
in V,(¢) for which equality holds in (4) at the point w, and let f(z) be

defined by
' Z—2zy
g (=2)(1=z,zp00"

Then f(z) is in ¥ (¢) and has the property asserted.
Let 4(r) = 0(i‘}'1<f2 A(r,0). Then A(r) is a decreasing function of r and

f@= f(©)=0.

it follows from (2) that the radius of close-to-convexity of V¥, (g) is the root
r, ol the equation A(r) = —n.

If r, is the radius of convexity of ¥ (¢), then A4(r) = 0 for r < r, and
so r; > ry; hence we may assume that re[r,, 1) throughout the rest of
the proof.

Differentiating (10) w.r.t. 8, we get, after a brief calculation

04(r,8)  [1—k(1—) cosifr+(1—20)r?) (1 —r?)
6 1—2r* cos 0+r*

Clearly, 4(r,0) assumes its minimum value for a fixed r at 0 = 6,
where
0, 1+(1-20)7?

O T k-9
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Such a 6, exists in view of the fact that, for r > r,,

14+(1—20)r?

k(1—o)r
Hence

A(r) = Osi&fz" A(r,0) = A(r, 6,).

Thus we get (5). We have 4(r,) = 0 and A(r) - —c0 as r = 1. Since 4(r)
is a decreasing function of r, there exists a unique root r, of the equation
4(r) = —n in the interval (ry, 1) and this root r, is the radius of close-to-
convexity of V(o).

This completes the proof of the theorem.

For ¢ = 0 we obtain Theorem 1 of Coonce and Ziegler [1] as a partic-
ular case of the above theorem.

References

[1] H. B. Coonce and M. R. Ziegler, The radius of close-to-convexity of functions of
bounded boundary rotation, Proc. Amer. Math. Soc. 35 (1) (1972), p. 207-210.

[2] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), p. 169-185.
MR 14; 966.

[3] J. Krzyz The radius of close-to-convexity within the family of univalent functions, Bull.
Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), p. 201-204. MR 26 # 6384.

[4] V. Paatero, Uber Gebiete von beschrankter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A
37 (1933), p. 9.

[5] K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded
boundary rotation, Ann. Polon. Math. 31 (1976), p. 311-323. M.R. 52 # 11025.

DEPARTMENT OF MATHEMATICS
NUALINGAPPA COLLEGE
RAJAJI NAGAR, BANGALORE

Recu par la Reédaction le 30. 6. 1978



