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This paper was written in 1970. At that time there did not seem
to be sufficient interest in the axiomatics of measures on linear spaces
and the paper remained in a preprint form for several years. However,
in recent years there has been an increase of interest in this field as sum-
marized in the survey article by Urbanik [12]. In particular, Urbanik
poses as a problem (P 949) a special case of Theorem 3.1 of our unpublished
paper.

What follows is that paper. Although there is overlap with [12]
we have chosen to keep our previous paper in its original form, partly
because our treatment supplies a variety of details not presemnt in [12].
One remark: we work with the sample space S = R!>Y, however, our
arguments apply exactly as well to the sample space 8 = L*[0, b] which
Urbanik deals with in [12]. Furthermore, although Urbanik allows random
linear functionals F to be defined on linear subspaces Dy of L*[0, b] of
total measure one, we note that a Hamel basis argument as in Lemma 2.1
allows F' to be linearly extended to all of S in agreement with our own
definitions.

1. Introduction. Let R stand for the real line. If (X(t),teT) is a
real-valued stochastic process defined on a parameter set 7', then the
sample space of X is the set S of all real-valued functions on 7'. 8 is a real
linear space and it is possible to study, in a purely, algebraic manner,
the set of all real-valued linear functionals on S (the conjugate space
of §). The probabilistic nature of this paper stems from the fact that
we restrict ourselves to consider only the set S* of real-valued linear
functionals on 8 that can be defined as random variables in a natural
way. .
Let us go immediately into details. We usually set 7 = [0, b), b > 0,
or T = [0, ). We define (X (), t e T) as real-valued linear functionals
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on 8 by setting X (¢) (#) = x(t) for © € 8, € T. We define & as the smallest
o-field for which all the functions (X (t), ¢ € T) are measurable.

If P is a probability measure on (8, &), then (X(t),?eT) is.a sto-
chastic process. In our work we need to keep in mind that, by a fun-
damental theorem due to Kolmogorov, all stochastic processes X on T
can be represented this way (see [10], 4.3A).

Our basic assumptions about X are the following:

(1) X(0) = 0 almost surely (a.s.).

(2) X (¢) is continuous in probability on T.

(3) X(t) has independent increments.

We will in fact incorporate (1) into our definition of S by setting 8
to be the set of real-valued functions z on T such that x(0) = 0.

Let «* stand for the completion of & with respect to P and let 8*
denote the set of all real-valued linear functionals on S that are «*-

-measurable. We shall see that certain real-valued Borel measurable
functions f defined on T are X-integrable, i.e., 1!' f(t)dX () can be defined

in a natural way as a random variable on (8, ##*, P) which is-a.s. equal
to an element F in 8*. Our main interest is to go in the reverse direction:
that is, given F in 8* we wish to find some Borel measurable real-valued
function f such that

F = [f(t)dX(t) a.s.
P

The nearest approach to our work is the paper of Cameron and
Graves [1]. In this paper and in a subsequent one by Graves [5], the
two authors prove, among other things, that if X is Brownian motion
on [0,1] and F is an additive o«/-measurable functional on 8, then there
is some Borel measurable real-valued function f such that

f(f(t)z)dt< o and F = ff(t)dX(t) a.8.

[0,1] [0,1]

Their proof consists of rather complicated caléulations using a Fourier-
-Hermite development of F. A simpler proof of this theorem based on
Lemma 3.10 and martingale methods can be found in the unpublished
thesis of Kanter [6]. In fact, the same methods generalize the theorem
8o that it holds for any symmetric stable process of index ¢ € (1, 2], where ¢
is rational.

In this paper we usually assume that F is linear as well as additive,
and we prove the representation theorem of Cameron and Graves for
a rather large class of processes. The case of Brownian motion, however,
is necessarily excluded by the methods of this paper.



FUNCTIONALS ON A PROBABILITY SPACE 279

The contents of this paper are arranged as follows. In Section 2 we
present the concept of a continuous countably additive stochastic measure,
i.e., a process X satisfying (1)-(3) and a countable additivity assumption.
We shall then present the concept of stochastic integration; i.e., given
a real-valued Borel measurable function f we shall specify conditions
under which f is X-integrable. We will show that if f is X-integrable,
then we can define [f(t)dX (¢) as a random variable on (8, &%, P) which

T

is a.8. equal to an element of S8*.
In Section 3 we prove our main representation theorem, Theorem 3.1.
For this theorem we need an extra hypothesis on X, namely:

(4) If a sequence F, € 8* is such that, for some sequence a, € R,
F, —a, — 0 in probability, then, in fact, a, — 0 and ¥, — 0 in probability.

This hypothesis is satisfied by symmetric processes, strictly stable
processes, and processes for which P ({0}) > 0 (0 stands for the zero element
of 8). Theorem 3.1 states that if X satisfies (1)-(4) and if it has no Gaussian
part in its Lévy decomposition, then every F € §* is a.s. equal to a sto-
chastic integral.

In Section 4 we extend Theorem 3.1 to processes not necessarily
satisfying (2), thus covering the case of a sequence-of independent random
variables X,, n > 1. We then present some counterexamples to show
the necessity of (4) and also the necessity of the assumption that there
is no Gaussian part.

We end the introduction by presenting, in detail, the Lévy decom-
position of a process (X(?),t e T) satisfying (1)-(3).

Let us call a functien = € 8 decomposable if x has finite right-hand
limits (¢ —),

z(t—) = limxz(t'),
(Zv]

and finite left-hand limits z(¢+),
z(t+) = limz(t'),
tyt

existing for all ¢ € T. (At the endpoints of 7 only appropriate sided limits
are assumed to exist; if 7' = [0, oo), then the limit of x(¢) as ¢4 oo is not
assumed to exist.) By [10], 37.2¢ and 37.3a, if X satisfies (1)-(3), then P
assigns measure 1 to the set of decomposable functions. (Note that the
set of decomposable functions is a linear subset of S.)

Let z be decomposable. If x(0+) # 0, then we shall say that x has
a jump at 0 of size h = x(0+). If for ¢t € T, ¢ not a right-hand endpoint,
z(t+)—x(t—) # 0, then we shall say that x has a jump at t of size
h =x(t+)—=2(t—). By [9], p. 138, if x is decomposable, then the number
v;(8) (#) of jumps of z in the interval [0, t) with any size A such that
h/s > 1 is finite for all s 20 and t e T.
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Let us set v,(s)(z) = 0foralls = 0 and ¢ € T if x is not decomposable.
It follows from [10], 37.3A, that v,(s) (-) is a random variable on (8, &%, P)
for s #0 and ¢ eT. Let us denote this random variable by V,(s). By
[10], 37.3¢, if s # O is fixed, then the process V,(s) defined on T as ¢ varies
satisfies (1)-(3). On the other hand, if we fix ¢ € T, then for any y > 0
the process V,(s), defined either on (— oo, —y) or on (y, oo) as s varies,
satisfies (3). Furthermore, V,(s) has the Poisson distribution and we
can uniquely define a mon-negative extended real-valued measure L on
the Borel subsets of T' x R by setting L(T x {0}) = 0 as well as by setting

L([0,t) X (y, ) =E(V,(y)), L([0,t)x(—o00, —y)) =E(V,(—9))

for all te T and y > 0, and then extending (see [2], p. 136, the Hahn
extension theorem). L has the property that

82
Rf T L([0, t) x ds)

is finite for all t e T.

Let x € 8 be decomposable and, for teT, let h,,...,h, be a list
of the jumps of x of size h such that |h| > y > 0, in the order of their occur-
rence in the interval [0, t). Define #” € S by setting

' (1) = i h;.
1

If z# is not decomposable, then 2" = 0. It follows from [10], 37.3d,
that (-)”(t) is a random variable on (S, &#*, P) for all y >0 and teT.
Denote this random variable by X”(¢). Clearly, the process (X?(t),t e T)
satisfies (1)-(3).

We are finally ready to present the Lévy decomposition of X. Namely,
we can write

/

X(t) =a()+ Y () +Z(1),

where a is a continuous real-valued function on T with a(0) = 0, and
where Y and Z are independent stochastic processes defined on the prob-
ability triple (8, «*, P) and both satisfy (1)-(3). Furthermore, Y (¢)
has the Gaussian distribution of mean zero for all ¢t e T while Z(¢) is the
limit in probability of

X7(t)— fljszL([O,t)xds) as y.|0.

8>y

For a proof of this decomposition, see [10], 37.3D.

2. Stochastic integration. In this section, we consider stochastic
integration with respect to a process satisfying (1)-(3) and a countability



FUNCTIONALS ON A PROBABILITY SPACE 281

assumption. We again work with 7 = [0, b] or [0, oc), but we find it
necessary to consider various families of subsets of T for which we need
some nomenclature: & stands for the o-field of all Borel subsets of 7', %,
is the ring of all bounded Borel subsets of 7', and & is the ring of subsets
of T of the form

[toy 2)U...Ulln) B2 s1) s where 1, <1, < ...<ty, <l

We start by defining X to be a finitely additive stochastic set function
on (T, &) if whenever A4,, ..., A, are disjoint elements of &, (hen

X(4,U...U4,) = ZX(A,,,) a.8.
1

If we set X () = X ([0, t)), then (X (¢), t e T) satisfies (1). Conversely,
starting from a process (X (t),t e T) that satisfies (1) we can define a
finitely additive stochastic set function on (7, &) by setting

X([tn tz)) = X () —X(¢,) for ¢, <t,,

and then extending to all of £ by additivity. From now on, X stands
either for a stochastic process X (¢) or for a finitely additive stochastic
set function on (7, £), the two interpretations being interrelated as above.
The objects S, o, P, #", 8" remain exactly as defined in Section 1.

Definition 2.1. Let y, stand for the indicator function of A < T.
n
Let M, stand for the set of all functions of the form ) ¢;x,,, where A, €&
1
and ¢;eR, 1 =1,...,n. For fe M, and X, a finitely additive stochastic
set function on (T, £) defines [f(t)dX (t) to be ¢, X(4,). Such an ex-
) Uy 1
pression is called a simple stochastic integral.
It is trivially clear that every simple stochastic integral is in S*.
In this section we define [f(¢)dX () for a class of Borel functions f.
T

We follow the treatment of Shale and Stinespring [11] and Urbanik and

Woyezynski [13] on the subject of stochastic integration. However, we

expand upon the treatment of these authors by bringing out the fact

that all such expressions [f(f)dX (f) are a.s. equal to an element of S*.
T

For this we use the following lemma.

LeMuMA 2.1. Suppose that F, is & sequence of elements in S* such that
im F, (x) ewists a.s. in S. Then there exists an F in S* such that
n—>00

M (z) = lim F, (z) a.s.

n—oo
b
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Proof. Let
8, = {x e8: lim F,(x) exists}.
A—+00

Then 8, is a linear subspace of 8, 8, € &%, and P(8,) = 1. Put
. ]

F(x) =limF,(x) forxzel,

n—>00

and extend F linearly to the rest of 8 by an argument using a well-ordered
Hamel basis for 8. Clearly, F has the required properties.

We now add a condition of countable additivity to X, in addition
to (1)-(3). .

Definition 2.2. Suppose we have a mapping A — X(4) from ele-
ments of #, to random variables on some probability space such that
if X (#) is defined to be X ([0, t)}, then (X (¢), t € T) satisfies (1)-(3). Suppose
also that for all disjoint sequences A,,..., 4, of sets in #, we have

X (4,V...U4,) = D) X(4,) as.,
. 1

and if 4,, n > 1, is a decreasing sequence of sets in %, such that lim A4,

n—-00

is empty, then X (4,) — 0 in probability. We then say that X is a con-
tinuous countably additive stochastic measure on (T, %,).

Let us start with a process (X (), ¢ € T)) satisfying (1)-(3), and define
for A € £ the additive set functions a(4), Y (4), Z(A) in terms of the
functions a(t), Y (t), Z(t) in exactly the same way as we defined X (4)
in terms of X (f). We also put f(4) = B((¥(4))) for 4 € &.

LevMMA 2.2. The map A —-Z(A)+ Y(A) defined on (T, &) can be
extended to be a continuous countably additive stochastic measure on (T, &,).

Proof. It suffices to prove this lemma in the case where T' is bounded,
i.e, T =[0,b]. Now g is a- bounded non-negative additive set function
on (T, &) and, furthermore, S ([0, t)) is continuous. It follows again from
the Hahn extension theorem that § has a unique countably additive
extension to (7', #,). Let 8, stand for the measure on R which assigns
mass 1 to {0} and no mass elsewhere. Let § x d, stand for the product
measure of g and J,, defined on the Borel subsets of 7 x R. Define for
any Borel subset B of T x B the measure

p(B) = [ 11232 L(dt x ds)+(f x 8) (B).-

B

v i8 a bounded non-negative measure on the Borel subsets of T x R.
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For any A € & we have

E (exp[iuX (4)]) = exp [iua(A)+ f(o‘“'—l— tus )l-l—sz
. E

)R vtax s,

where the integrand is defined as a continuous function on T x E by
setting it equal to —(1/2)u2 at points of the form (u, 0).

We know that for any Borel subset A of T there is a sequence 4, € &
such that

v(((4n~4)U(4~4,)) x R) - 0.
Letting 4,,, = (4,~4,)U(4,,~4,) we have

Y(Ap, XR) >0 as m,n — oo.
But

10gE (exp [iu {Z (4,y) + Y(Am,n))])

; tus \ 1482
=f(e“’—1— 1+82) o ¥ ( Ay X d8).
R

It follows that Z(4,,,)+ Y(4,,,) — 0 in probability as n, m — oo.
Hence there is a random variable, which we denote by Z(A4)+ Y (4),
such that

V4

Z(A,)+Y(4,) ~Z(4)+Y(4)

in probability. It is clear that Z(A4)+ Y (A) is independent up to P-equiv-
alence of the particular sequence A4, which we use to define it. It is
also clear that

o\ 1 g
logE (exp [iu(Z(4) + Y (4))]) = Rf (e‘““’—l— 11“;) ;';"’ v(4 x ds).

Hence the map A - Z(4)+ Y(A) is a countably additive stochastic
measure on (T, %,).

From Lemma 2.2 it is clear that if X satisfies (1)-(3), then X can
be extended to be a countably additive stochastic measure on (T, #,)
if and only if the constant part a can be extended to be a measure on
(T, #,). Supposing now that this extension is possible we see that, for
any A in %,, X(A) is defined as the limit in probability of some sequence
X(4,), A, € £&. We can find some subsequence {n'} such that (4, ) con-
verges a8 n’' — oo a.8. The function

z — lim z(4,)
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is defined on a linear subset S, of § with 8, € «* and P(8,) = 1. Hence,
a8 in Lemma 2.1, we may extend this function to all of 8 so that it is

in 8*. We denote this extension by I, . If
n
[ = Z Ci%4;y Where A;e€ %, and ¢; € R,
0
we can similarly define I, in 8* so that
if = 2 OiX(Ai) a.8.
1

Definition 2.3. Suppose that X is a continuous countably additive
stochastic measure on (7, %,).

(a) If f is a real-valued simple Borel function, i.e.,
n
f= 2 CiXa;y Where A,,...,A,e€%, and ¢,...,0,€R,
1

then we say that f is X-integrable and we define [f(1)dX () to be
A

D' 6X(An4,) for all Aeg.
1

/
(b) Let us suppose that f is a bounded real-valued function with
{t: f(t) # 0} € #,. (We call such functions %,-bounded.) We say that f is
X-integrable and we define [f(t)dX (¢) to be the limit in probability of
A

[ f.ax @),
A

where f,, n>1, is any sequence of real-valued simple Borel functions

such that f, — f pointwise and sup|f,(¢)| is #,-bounded. By [11] and
n=1
[13] the above limit in probability is independent of the particular sequence

f. and exists for all #,-bounded f and for all A € &.

(¢) Suppose now that f is any Borel measurable function on T. We
say that f is X-integrable if for any A € # we have

lim [ fyp dX(t) as., where D, = {t: |f(t)| < n}n[0,n],

n—»ooA

and we denote this limit by
[fwax ).
A
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By [13], for G, = {t: |f(t)| < a,}n[0,D,],
bm [ frg, dX(t) = [f(t)dX(?) as.
A

n—>00 A

for any sequences a, and b, such that a,1 oo and b, 4 oo, if f is X-integrable
and A € 4.

In [11] an analytical characterization of X-integrable functions is
given. We will not need this characterization here, so we omit it.
Let us now show that, for any X-integrable function f, there is an

element I, of 8* such that
I, = [ f(tyax(y.
T

We have already verified this for simple Borel functions f. If f is
%,bounded, then there exists a sequence f, of simple Borel functions

such that f, — f uniformly. If we take a subsequence {n'} such that AI,ﬂ,
converges a.8., then we can apply Lemia 2.1 as before to get the required
result for f. If f is only assumed to be X-integrable, set f, = fxp . Now

fn 18 #y-bounded and I, converges a.s. Apply Lemma 2.1 once more and
we are done.

3. Completion of measurable linear functionals. We start by proving
some facts about probability measures on Abelian groups.

LEMMA 3.1. Suppose that 8 is an Abelian: group. Suppose that T is
some abstract index set and, for every t € T, X (t) 8 an additive real-valued
functional on 8, i.e., for all z, y €8,

X(t)(z+y) = X () (x)+ X (1) ().

Let of be the o-field generated: by the functionals {X(t),t e T'}. Define
6: Sx8—>8 by 6(x,y) =ax+y for (r,y)eS8Sx 8. We claim that
67 (A) e oA xsof for all A e o.

Proof. If A is of the form {Z: X (t)(2) < u}, where t ¢ T and » € R,
then

071(4) = {(y, #): X(t)(2)+X(t)(y) <u} = UA4,,
where the union is taken over all » rational and
A4, = {(z,9): X@)(@)+r<u}n{lz,y): X()(y) <7}

A, is clearly in & X o/. Hence 67'(4) is in o X o for A of the above
form. But sets A of the above form generate .

Definition 3.1. Suppose that (S, &) satisfies the hypotheses of
Lemma 3.1 and assume that P, and P, are probability measures on (8, o).
Fo/r any B e o X let us put

B, ={x: ve8, (v,y) € B}.

8 — Colloquium Mathematicum XXXVIII.2
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By [10], 8.2a, B, € &, and the functions y — P,(B,) and y — P,(B,)
are o/-measurable. Also

[ Py(B,)Py(dy) = [Ps(B,)P;(dy),
S S

and if we denote by P, x P,(B) the common value of the last two integral
expressions, then P, x P, is a probability measure on (S X 8, & X ).

Ifweset B = 0'(A)for A c &, weget B, = {w: (v +y)c A} = A—y.
Let us define the probability measure P,*P, on (S, &) by setting

PyxP,(4) = [ Py(A —y)Py(dy) = [Py(A—y)P(dy).
S S

If (8, o) satisties the hypotheses of Lemma 3.1, then for all 4 € &
and y € § we have just seen that A —y e &. If P is a probability measure
on (8, &), let us denote by P? the probability measure on (8, o) such
that PY(A) = P(4 —v).

LeMMA 3.2. Let (8, o) be as in Lemma 3.1. Let P be a probability
measure on (S, o#). Suppose that F i3 an additive real-valued fumctional
on 8 which 18 measurable relatively to the completion of o/ with respect to
any measure P®, x € 8, x fixzed. Then F is measurable relatively to the com-
pletion of o/ with respect to any other measure PY, y € 8.

Proof. It suffices to prove this in the case where x = 0. Let % be
in R. We can find two sets in ./, denoted by A, and B,, such that

A, < {#: Fl®)< u} < B,
and such that if ¢, = B,~A4,, then P(0,;) = 0. Now

A,+yc{o: Flo)<u}+yc B,+y
and
{o: Fa)<u}+y = {w: F(a)<u+F(y)}
by the additivity of F. Furthermore,

(B+y)~(4,+y) =C,+y and PYC,+y) =P(C,) =0.

It follows that {#: F(x) < w+ F(y)} is in the completion of & with
respect to PY. But this argument works for all « € R. It follows that F
is measurable with respect to the PY-completion of .

LeEMMA 3.3. Let (S, o) be as in Lemma 3.1. Let P, and P, be two prob-
ability measures on (8, o). Let o} denote the completion of o, with respect
to P;,, i =1,2. Let o&* denote the completion of o with respect to P, where
P = P,*P,. Let F be a real-valued additive functional on S and suppose
that F is measurable with respect to o4*. Then F is measurable with respect
to o3, i = 1,2. Furthermore, if ¢ denotes the characteristic function of the
random variable F on (8, o*, P) while @; denotes the characteristic function
of the random variable F on (S, o7, P;), t = 1,2, then ¢ = @,@,.
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Proof. For r rational let D, = {#: F(zr)<r}. Let A,,B,e o be
such that

4,cD,c B, and P(B,~A4,) = [P;((B,~4,)—y)P,(dy) = 0.
J B

Let C, = {y: P,((B,~A4,)—y) =0}. Now P,(C,) =1. Hence, if
0= an

then P,(C) =1. Now choose # €(. Then P,((B,~A4,)—=) =0 for all
rational », i.e., P{(B,~A,) = 0 for all rational r. It follows that F is
measurable with respect to the P{-completion of «/. Now, since F is ad-
ditive, we can use Lemma 3.2 to conclude that F' is measurable with
respect to /7. The functional F is measurable with respect to «; by
a similar argument.

As for the last statement, consider the map y — P,(D,—y). Since
P,(C,) =1, this function is «/;-measurable and is P, a.8. equal to the
function y — P,(4,—vy). Now

P(4,) = [Pi(4,—y)Py(dy). '
S
Also P(4,) = P(D,). It follows that
P(D,) = [Py(D,—y)Py(dy).
S

Hence the last statement follows.

Lemma 3.3 will play a crucial role in our attempt to represent"elements
of 8* by stochastic integrals. We now present some notation that we
will use when we apply Lemma 3.3 to X as in Section 1 or 2.

Definition 3.2. Suppose that X is a continuous countably additive
stochastic measure on (T, #,). Let A be a fixed set in #. We can define
a countably additive stochastic measuwre on (T, #,), denoted by X ,, by
setting

X, (B) =X(AnB) for all Be %,.

Let P, be the measure induced on (8, &) by the process (X 4(t), ¢ € T),
where X ,(t) = X ,([0,?]). Let A° denote T'~A. Then P =P %P ¢
in the sense of Definition 3.1, and Lemma 3.3 can be applied. Denoting
by % the completion of o with respect to P, we see that if F is any
additive functional on 8 which is «/j-measurable, then F is also «/%-
-measurable for any A € #. In particular, if F € §*, then F is of%-meas-
urable for any A € 4. (Remember that «* = #7.)
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In connection with Definition 3.2, let us note that if f is a Borel
measurable function and 4 € #, then fy, is X-integrable if and only if
f i8 X ;-integrable. Furthermore, if that is the case, then, for all B € %,
f fx44X (1) has the same distribution as [fdX ,(t). Also
B B

[1aX ) = [fr4dX4(t) Py a5,
B B

Definition 3.3. Suppose that (X (t), t € T) satisfies (1)-(3). For any
z € § and y > 0 define 2" as in Section 1 and put z, = ¢ —2” — a, where a
is as defined in the Lévy decomposition of X. Let E”(r) = ¥ and let
E,(z) = z,. Now both E” and E, are measurable mappings from (8, «*, P)
to (8, «). Let P” stand for the measure induced on (S, o) by the mapping
E”; define P, similarly in terms of E,. Then again P = P"%P, in the
sense of Definition” 3.1; and if we denote by «” the completion of
with respect to P?, then any additive functional ' on 8 which is «/*-
-measurable is also «/”-measurable (and if we define &, to be the com-
pletion of o with respect to P,, then F is also <, ,-measurable).

Let us remember the definition of X” from Section 1, and let
us put

X,(t) = X(t)— X7 (t) — a(t).

Then X” (X,) induces the measure P* (P,) on (8, &/). Furthermore,
both X” and X, satisfy (1)-(3).

Lastly, let us note that Definitions 3.2 and 3.3 can be applied in
sueccession to a process X, yielding (X ,)* or (X”),. However, it is easy
to see that, for all t e T,

E (exp [iu(X7) 4 (tY]) = E (exp [iu(X 1) (1))

=exp| [ (¢“—1)If(4n[0,?) x ds)].

s>y

We shall henceforth denote by X7 the process which we have just
defined and we shall denote by P’ the probability measure which it
induces on (8, &). We shall denote by % the completion of & with
respect to PY.

We now prove a lemma whose nature is rather technical. It is used
in the proof of Theorem 3.1. 4, as used below, stands for the Borel subsets
of R.

LEMMA 3.4. Suppose that (X (t),teT) satisfies (1)-(3). Let @ be a
real-valued additive functional on S which is measurable with respect to ™.
Suppose that, for some y > 0, G =0 P” a.s. Then G is measurable with
respect to the P-completion of (E,)~ (). '
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Proof. Let (& x &) (y) stand for the completion of ' x«o/ with
respect to P, x P”. Let =,(z,y) =« and =,(z,y) =y for (x,y) eS8 x 8.
Define 6: § x 8 — § as in Lemma 3.1. Now @ is measurable with respect
to «,; hence Gon, is measurable with respect to (& x &) (y). Also G is
measurable with respect to «/”; hence G o=, is measurable with respect to
(o X A) (y). Hence Gof = Gom,+Gomn, is measurable with respect to
(o x ) (7).

Now Go 6 is measurable with respect to the (P, x P?)-completion of
n; ' (), since Gom, =0 P, X P? a.s. by the hypothesis of the lemma.
(Note that Gon, as a random variable on (8 x 8, (& X ) (y), P, x P?)
has the same distribution as does @G as a random variable on (8, #?%, P?).)

Thus @ is measurable with respect to the P-completion of (E,)™' (%),
since the map (Go0,n,,n,) defined on (Sx8, (& X)(y), P,xP
has the same distribution on (Rx8x 8, #x« x«) as does the map
(G, E,, E”) defined on (S, «*, P). (Note that (P,x P?)6~'= P,*P" = P.)

The following lemma shows how we use the hypothesis that X has
trivial Gaussian part.

LEMMA 3.5. Suppose that (X (t),t € T) satisfies (1)-(3). Then, if Y (t),
the Gaussian part of X (t) in its Lévy decomposition, t8 identically zero,
then ((B,)™' () is P-trivial (i.e., P assumes only the values 1 and 0 on the

>0
a-subfield.)

Proof. (E,)"'(«) and (E”)"!(«) are P-independent for all y > 0.
Hence (N\(E,)”'(«) is independent of the o-field \/ (E”)"'(«) generated

y>0 y>0

by U(E")™ ().

y>0
Now, from the Lévy decomposition of X and the assumption that Y
vanishes it follows that </ is equal to the o-field generated by the random
variables X”(t), y > 0, t € T, up to P-equivalence. Furthermore, since the
map
E: (8, o% P) > (8, &)

is measurable and since E”(z) = ” for all x € 8, X”(t) is measurable with
respect to the P-completion of (E*)™'(«). It follows that \/ (E*)™(«)
contains & up to P-equivalence. y>0

We now present some results about the possibility of representing
stochastic integrals as linear functionals in a more direct manner than
in Section 2.

Suppose that (X (¢), t € T) satisfies (1)-(3) and let L([0,¢]x R) < oo
for all teT. Then lim X*(f) exists as a limit in probability. We say

y—0

then that X satisfies Condition A’ if
L([0,{]XR)< oo and X(f) =limX"(¢) a.s. for all teT.

y—>0
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Note that if X satisfies Condition A’, then X can be extended to
be a countably additive continuous stochastic measure on (T, #,). Note
also that if X satisfies (1)-(3), then X satisfies Condition A’ for any y > 0.

Definition 3.4. A function x: T — R is said to be ptecewise constant
if there exists a strictly increasing sequence of points ¢, € T, finite for T
bounded, such that

U[07 ) =

and x is constant on each of the intervals [i;, ¢, ,).

Let S’ denote the set of all piecewise constant functions on 7 with
w(t) =x(t+) for te T t not a right-hand boundary point. The following
theorem can be found in [4], p. 274.

THEOREM A’. Let (X (), t € T) satisfy (1)-(3). Then P assigns measure
one to 8’ if and only if X satisfies Condition A'.

Definition 3.5. Let X satisfy (1)-(3) and Condition A’. For any
real-valued function f on T with {¢: f(f) # 0} a bounded subset of T we
put, for z e 8/,

I, (x) = Zf(m By

where « has its jumps at the points #;, and h; are the correspondmg sizes
of the jumps. (Note that the sum has only a finite number of non-zero
terms.) We extend I, to be linear on all of § by a Hamel basis argument
a8 in Lemma 2.1.

LeMMA 3.6. Suppose that (X (1), t € T) satisfies (1)-(3) and Condition A'.
Then, for any A € B, and any real-valued Berel measurable function f,
Sr4 18 X-integrable. Furthermore, if f,, n > 1, i8 a sequence of Borel functions
such that f, — f pointwise, then

Jn0) 240X ()
converges to,
J 10za0ax )
in probability. Lastly, I, , is of*-measurable and
Ly = JI02403X (1) o
Proof. Let
fa =Jxc,» where C, = {i: |f(?)| < n}.
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We need only to prove that, for any C € %, f faxq4dX () converges
in probability. Consider

logE (GXP l""u ( f (fn —fm) X4 dX(t))])
C

= [ (exp[ius(fu(t) —fm(t)] —1)L(dt x ds).
(ChA)xXR
The last expression goes to zero as n, m — oo by the Lebesgue bounded
convergence theorem. It follows that f f, y,dX (¢) is Cauchy in the topology
g

of convergence in probability, and hence converges in this topology.
This convergence is, in fact, a.s. since we can treat o" fax4dX (t) a8 a series
of independent random variables.

The second statement in the lemma follows from the computation
with characteristic functions that we have just accomplished.

Let us now prove the last statement. Let M, be as in Definition 2.1.
Define M, , n > 1, inductively in terms of M,_, by setting M, equal to
the set of all real-valued functions that are pointwise limits of a sequence

of elements of M,_,. Clearly, 'UM,, is equal to the set of all real-valued
0

Borel measurable functions on 7. Now for fe M, and A €&, clearly,
I, , is o*-measurable and

I, = [fr.dX (1) as.
T
If fe M,, then there is a sequence of functions f, € M, such that
fa(t) = f(2) for all t e T. Hence
- Iy (@) > Iy (®)  for all wed'.

On the other hand, by the second statement of this lemma,

[fuzadX () > [fr,dX (1)
r r

in probability. It follows that I, , is /*-measurable and
I, = [f1,dX(%) as. for all fe M, and A eé.
T

Proceeding inductively we infer that in the last equation f needs
only to be assumed Borel measurable. Hence A may be assumed in %,
in the last equation, since fy, is then Borel measurable and there exists
a set in £ which contains A.

We now prove a basic lemma about the possibility of representing
elements of 8* as stochastic integrals. This lemma and Lemma 3.3 are
the two crucial points of our discussion.
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LEMMA 3.7. Suppose that (X (t),¢ e T) satisfies (1)-(3) and also Con-
dition A’. Suppose that F is in S*. Then there is some Borel measurable
function f such that for all A € #, we have

F = [f(t)aX (1) Py as.
T

Proof. First note that if f is Borel measurable and 4 € #,, then
fxa 18 X-integrable by Lemma 3.6, and hence f is X ,-integrable. Note
also that if x € 8’, then the map B — x(B) defined on £ can be extended
uniquely to be a countably additive measure on (T, %,). For A € %, let
us define the function x4 by setting

x4 (t) = w(An[0,1).

If A =[0,b], b> 0, let us write 2> = 2!*%. Note that if we define
the map B4: 8§ - 8 by E4(x) =z for x € §’, and B4 (z) = 0 for x ¢ S,
then P(E4)™! = P,. Let us also note that if

A =1[0,b] and H®’={xel: z(t) ==z(b) for t> b},

then Hb € d?o,b] and -P[O,b] (Hb) = 1.

Let us now proceed to define the function f. First we define a real-
-valued function g on 7. For ¢ € T let 2, be an element of §’ which is every-
where constant except for a jump at ¢ of size h(z,). Put g\t) = F(«,)/h(x,).
The function g is well defined since F and h are linear. Note that, for
xel and Aed,, I, (v) =F ().

We now show that we can change g on a Borel subset D of T such
that L(D x R) = 0, and we get a Borel measurable function f. To do
this let » > 0 and define B® = 8’ as

B® ={z e8':  has one and only one_ jump in [0, b]}.

Then B®e o, and Py (B) > 0. Let us now restrict ourselves
to the set B®. Let &/ (b) denote {¢ = BNnB® B e o}. Let

Q,(C) = Py 3;(C) /Py (B®)  for C e o (D).

Then (B®, o (b), Q,) is a probability triple. Let o#*(b) denote the
completion of o/ (b) with respect to @,. Now

{x e B’: F(x) = F(a?)} > H nB°.

It follows that the map & — F(2°) defined on B®is «f*(b)-measurable.
Let us define v,: B® - [0, b] by

7(®) = sup{t: «(t) = 0} for x e B
te[0,b)

Write g(vy(2)) = F(«°)/x(b) for xe B’ It follows that gow, is
measurable with respect to «#*(b). Hence 7;({t € [0, b]: g(t) < a}) is in
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&* (b) for all a € R. It follows that there exist two sets A,, B, € o (b)
such that

A, c ' ({tel0,b]: g(t)<a})c= B, and @Q,(B,~A4,) =0.
Define V,: B® - [0, b]x R by V,(x)= (7,(2), (b)) for x e B’ and set
O, = {(t,8): 1<y, 8< u}, C,=1{(t,8): t>1t} fort,e[0,b].
Clearly, the map V, is measurable on (B, o (b)). Also

Vy1(C,) = {xe B z2(t)<u} for u<0
while
Vy'(0,V0,) = {x e B: x(t,) <u} for u>0.

Hence V, generates & (b), and so there exist two Borel sets A, and B,
in [0,b]Xx R such that V;'(4,) = 4, and V;!(B,) = B,.
Now

Vy(zo ' ({t € [0,b]: g(t) < a})) = {t [0, b]: g(t) < a} X R.
It follows that
A, c {te[0,b]: g(t) < a} xR < B,.
We also have Q,V;'(B;~A4,) = 0. Now define n: Tx R — T by
=((t,8)) =t for (t,8)eTx R.
Let B stand for ([0, 5] X R)~B,. Then
4, (7(4,) X B) = {t€[0,b]: g(t) < a} x R < (([0, b]~=(B;)) X R) = B,.
Hence we have
@ V5 (([0, b1 ~n(Bf) x R) ~(%(4,) x B)) = 0,

gince all sets appearing in the last expression are analytic, and hence
completion measurable with respect to any measure on 7' x R (see [7],
p. 391). It follows likewise that

Qy 75 (([0, b]~7(BS)) ~x(4,)) = 0.
But we have

n(4,) = {t [0, b]: g(t) < a} = [0, b]~=(B;).

It follows that if g is restricted to [0, b], then it is measurable with
respect to the completion of the Borel sets under Q,z;".

To complete the proof of the lemma we need to examine the proba-
bility measure @,7,' defined on ([0, ], #) more closely. For ¢t e [0, b]
let

N ([0, t) =LmV,(8)+V.(~9),
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where the limit is taken in probability. (Note that N ([0, )} is the number
of jumps in [0, t).) Extend N fo a finitely additive stochastic set function
on ([0, b], £) in the usual way. Note that s

E (exp[iuN (B)]) = exp[(¢™—1)L(B x R)]
and
E(N(B)) = L(BxR) for Bek&.
Hence N has a unique extension to ([0, b], #,) which is a continuous
countably additive stochastic measure. Furthermore, E (N (B)) = L(B x R)

for Be 4,.
Now, for B € #, and B.c [0, b],

Q7' (B) =P [N(B) =1 | N([0,d]) = 1]
=P|[N(B) =1, N([0,b]~B) =0 | N([0, b]) = 1]
_exp[— —L(B x R)]L(B x R)exp[—L(([0, b]~B) x R)]
exp |—L([0, b) X R)| L([0, b] x R)
L(B X R)
L([0,b]xR)

Hence, we can change g on a Borel set D such that L(Dx R) =0
to get a Borel measurable function f. Also E(N (D)) = 0, whence, for
a.lmost all # € 8', # has no jumps in D. From this it follows that I,, (@)

I, ,(®) as8. for any A €%, Let us recall that, for xed, I, 4(””)
= F(m‘) We conclude easily that F(z“) = I, (#4) a.s., and then, by
Lemma 3.6,

F = [f)dX (1) P, as,
T

Let us examine the proof of Lemma 3.7 to see under what extra
conditions on X the statement of Lemma 3.7 would be true if F were
only assumed to be additive and #/*-measurable. We need only to define
g(t) = F(x,)/x,(b) for x, € 8’. Now, suppose that there exists a countable
subset R’ < R such that

1° L([0,b] x R) = L([0,b]x R’) for all > 0, and

2° there is an element d € R’ such that for all a € R’ we have ¢ = rd
for some rational number r.

Then almost all sample paths of X have jumps only of height rd
for some rational r. If we restrict ourselves to this additive subspace of 8,
then we can carry out the proof of Lemma 3.7.

LeMMA 3.8. Suppose that (X (&), t € T) satisfies (1)-(3). Let F be in S*
Aec®B, and y> 0. Then there exists some Borel measurable function f
such that

F = [f(®)aX%(t) P, as.
r
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Proof. By Lemma 3.3 we know that F is measurable with respect
to «”. Now P? satisfies Condition A’'; so from Lemma 3.7 we conclude
that for any y > 0 there is a Borel function f (which may depend on y)
such that

F = [f(t)dX,(t) P as.
T

Let us now eliminate the possible dependence of f on y. Let y, = 1/n,
n=1,2,..., and let L, denote the measure
B > L(Bx{s: |s|>y,}) for Be%,.

Define the non-negative measure L’ by

2
L'(B)=f18 _L(Bxds) for Bed,
R +8

We infer that, for any Borel set B, if L'(B) = 0, then L,(B) =0
for all n > 1. On the other hand, if L, (B) = 0 for all n > 1, then L' (B) = 0.
From this it follows that g, as defined in Lemma 3.7, is measurable with
respect to the completion of #Z under L’. So, if we assume that the Borel
function f of Lemma 3.7 was constructed by changing g on a set of D
of L' measure zero, then the proof is completed.

We now introduce our hypothesis (4) on X (see Section 1) and prove
that if X satisfies (1)-(4), then X can be treated as a stochastic measure.

We note here the following equivalent version of (4):

X F,n=>1, is a sequence of elements in 8*, and ¢,, n> 1, is a
sequence of real numbers, then F, converges in probability whenever
F,—c, converges in probability.

LemuMA 3.9. If (X (t),t € T) satisfies (1)-(4), then the map A —->X(A)
defined on (T, &) can be extended to be a continuous countably additive sto-
chastic measure on (T, B,).

Proof. Let X(¢) = a(t)+ Y ({)+Z(t) be the Lévy decomposition
of X. We now prove that a is a bounded variation on every finite interval
[0, b]. Suppose not; then there is a sequence 4, < [0,b], 4, €&, such
that |a(4,)] - co. Hence X(4,)/a(4,) -1 in probability. This contra-
dicts (4). We conclude that a i8 of bounded variation. It has already
been known that a is continuous. We conclude that « has a unique ex-
tension to a measure on (7T, #,). From Lemma 2.3 it follows that X itself
can be extended, which completes the proof.

. In the proof of Theorem 3.1 we will use the following lemma whose
proof can be found in Loéve [10], Lemma 37.Vb. Loéve has a weaker
statement but his proof works for our formulation.
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\
LemMA B. Let X,,...,X,,... be a sequence of independent random

variables. Suppose that there exist a characteristic function ¢ and, for all
n > 1, a characteristic function ¢, such that ¢ = @,¢,, where ¢, is the
characteristic function of

-
1

Then there exists a sequence of constanis a, such that 8,—a, con-
verges a.s. ’

THEOREM 3.1. Suppose that (X (t),t € T) satisfies (1)-(4), and suppose
also that Y (t) = 0 a.8., where Y is the Gaussian part of X in its Lévy de-
composition. Then there exists a Borel function f such that f is X-integrable
and ' "

F= [ft)dX (1) a.s.
Vi

Proof. Define f as in Lemma 3.8; we get
F = [f(t)aX{om(t) Plom 5.
T

for every y > 0 and every positive integer me T. Write
Jn =fxD,,’ where D,, = [0, n]n{t: IF @) < n}.

For every n let g;; be a sequence of simple Borel functions such that
g% — f, uniformly and

Lk) {t: gx(t) # 0} c D,.

Let y; = y/j for j =1,2,... Choose for each n a subsequence {k'}
of {k} such that
[ g ax®) - [f.()aX () as.
7 7
and such that

[ge®ax@) - [£a()dX"(5) P7 as.  for all j>1.

T T ’

(This can be done by a diagonalization argument.)

It follows that lim I , can be extended to be a linear functional on

ko0 Ik’

all of 8, called I, , such that

I, = [F,(dX() as. ‘
T
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and
I, = [f.dx"@) P7as  forall j>1
T

We now wish to prove that
F = [f,()dX,() P, as.,
T

where X, stands for X, and P, denotes the measure that X, induces
on (8, &). Now

F= [f,0aXx; i) P as. forall j>1
T

by the choice of f and Lemma 3.8. Hence, if G, = F — f, , then G, =0
P a.s. for all j > 1. So, by Lemmas 3.4 and 3.5, @, is constant P, a.s.
But X, also satisfies (1)-(4); hence G, = 0 P, a.s.

Let ¢ stand for the characteristic function of F on (8, «*, P). Let
@, denote the characteristic function of ¥ on (8, o, P,) and let ¢ denote
the characteristic function of F on (8, «,° P2), where P? stands for the
measure induced on (8, &) by X, p, and o (£2°) denotes the completion
of o under P, (P;). By Lemma 3.3 we get ¢ = ¢, ¢5.

However, since F' = [f,(t)dX,(t) P, a.s. and since [f,(t)dX, (t) has

T T

the same distribution under P, as does [ f,(t)dX () under P, we conclude
that the characteristic function of [f, é) dX(t) is ¢,. By Lemma B this
implies that there exists a sequence og constants ¢, such that [ f, (¢)dX () —e¢,
converges a.s. Applying (4) we conclude that [f,(¢)dX (t’f converges a.8.
(The fact that f is X-integrable follows, since weI(;an prove that ‘{ fa(t)dX (t)

converges a.s. for any A € #, by considering [f,(t)dX ,(¢) and applying
the arguments above to the measure P,.) T

Now, if we define I r a8 a linear extension of limf,n, then it is clear
that n—e

if = f F(®)adX (g m)(t) Promy a.8. for all m.
T

However,
F = f f()dX} y(¢)  for every y >0
T .

by our choice of f. Hence, if G = F—f,, then G¢ = 0 P}, ,,) a.8. for every
y > 0. So, from Lemmas 3.4 and 3.5 it follows that @ = 0 P, 2.8,
using (4) as before. It T is bounded, we are done.
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!

So assume that T = [0, o). Define E,,: S -8 by E,(v) = z,, for
x €8, where z,(t) =0 if ¢t € [0, m] while z,(t) = z(t)—=2(m) if > m.
Then PE,' = P, ). Define A to be the completion of E'(«) with
respect to P. Now G =.0 Py, ,, a.5., whence by a proof imitating Lemma 3.4
we know that @ is measurable with respect to «,,. It follows that @ is

measurable with respect to () «),. Now for every A € £ we infer that
m=1

X((4~[0, m])U([0, m]~A4))

converges to zero in probability a8 m — co. From this it follows that
M o, is P-trivial. Using (4) once again we conclude that G = 0 a.s. But

m=1

G = F—i, and we know that
I, = [f®aX () as.
T

We now give some applications of Theorem 3.1.

Definition 3.6. Suppose that X is a random variable such that if
X ..., X, are independent and have the same distribution as X, then
X,+ ... +X, is distributed like (n)?X for some ¢ € (0, 2] which is sup-
posed to be fixed while n is allowed to vary over all positive integers.
If ¢ # 1, then we shall say that X has a strictly stable distribution. For
¢ = 1, we shall say that X has strictly stable distribution if X is also
symmetrically distributed. The number ¢ is called the index of stability.

Let (X (t),t e T) be a stochastic process that satisfies (1). Then we
shall say that X is strictly stable of index ¢ if, for all ¢,,...,t, €T and

@yy ..., 0, € R, Ya;X(t) has a strictly stable distribution of index g¢.
1

LeEMMA 3.10. If (X(t), t € T) satisfies (1) and is sirictly stable of index
q, then any F € 8 1s also strictly stable of index q.

Proof. First note that since X satisfies (1), we can define the objects
P, 8, o, %, 8* as in Section 1. Now, for any positive integer n let S"
stand for S8 x ... x 8, the set product of 8 with itself » times. Let <"
stand for &/ x ... x o, the n-product o-field. Let ™ stand for the com-
pletion of «™ with respect to P", the product measure P x ... X P.

If (2y,...,2,) € 8 define F;(z,,...,x,) to be equal to F(x;). Then
F,,...,F, are independent random variables on (S, .szi”, P") and they
all have the same distribution as F has on (S, &, P).

Let 6,: 8" — 8 be defined by

0, (1y vy @) = (L) (@4 ... +2,).
Then 6;!(«f) = ™ by an easy extension of Lemma 3.1. Also, P"0,"!
— P on (8, /). We conclude that 6! (#*) = /" and that the distribution
of Fof, on (8, .saf", P™) is equal to the distribution of ¥ on (8, &#*, P).
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Now Fof, =n""(F,+ ... +F,) by the additivity and homo-
geneity of F. Indeed,
F( 2+ ... +2, )

ol

=F (0 (@ ey @)+ oo +Fy(n(wy, ...y @)

by the additivity of F, while
F,(n Y@y, ..., ;) = n F(2y,...,2,) forall ie{l,...,m}

by the homogenelty of F.

It follows that if ¢ # 1, then F is strictly stable of index q. If q=1,
then we must also prove that the distribution of F is symmetric. However,
if ¢ = 1, then the distribution of X is symmetrie, i.e., the map # - —«
leaves P-invariant. Also — F(x) = F(—«) by the additivity of F. From
this it follows that the distribution of F' is symmetric.

Let us note that if ¢ is rational, then n'/? will be rational for infinitely
many n, in particular, for at least two relatively prime integers n. Hence
the equation Fof, = n '¥(F,+ ... +F,) is true for at least two rel-
atively prime integers n. Moreover, from [3], p. 562, Prohlem 9, it follows
that F is strictly stable of index ¢ if such an equation holds for two re-
latively prime integers n. If we assume only that F is additive and «/"-
-measurable, then Lemma 3.10 holds for such an F if ¢ is rational.

LemMaA 3.11. Let X,, n>1, be. a sequence of strictly stable random
variables of index q, and let a, be a sequence of réal mumbers. Then
X, +a, — 0 in probability if and only if X, — 0 in probability and a, — 0.

Proof. Suppose that X, +a, — 0 in probability. For any positive
integer ¥ let us construct k sequences X, 1), ..., X(n 1) such that, for any »,
Xin L X, 1) are independent and have the same distribution as X,.

Now Z‘X(,,,‘)+kan also converges to zero in probability as n — co. Also
k 1

D' X, is distributed like k'¢X,. It follows that ¥'?X,+ka, >0 in
1

probability. We conclude that (k'“—k)a, —0. If ¢ # 1, we are done.
If ¢ =1, then the distribution of the random variable X, is symmetric
for all n. But it is easy to see that the statement of this lemma holds for
any sequence of symmetric random variables.

CorROLLARY 3.1. Suppose that (X(t),teT) satisfies (1)-(3) and is
strictly stable of index q < 2. Then Theorem 3.1 is valid for X.

Proof. In the Lévy decomposition of X = a+ Y +Z, it can be
seen that the Gaussian part Y vanishes. Furthermore, by Lemmas 3.10
and 3.11 it can be seen that X also satisfies (4).

CoroLLARY 3.2. Suppose that (X (t),teT) satisfies (1)-(3), has the
vanishing Gaussian part in its Lévy decomposition, and X (t) is symmetrically
distributed for all t € T. Then Theorem 3.1 is valid for X.
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Proof. By the concluding remarks of the proof of Lemma 3.10 we
see that if X is symmetric, then any F in 8* is symmetrically distributed.
Now the statement of Lemma 3.11 is true for any sequence of sym-
metrically distributed random wvariables, hence X satisfies (4).

COROLLARY 3.3. Suppose that (X (t), t € T) satisfies (1)-(3) and Condi-
tion A’. Suppose also that T = [0,b]. Then Theorem 3.1 is valid for X.

Proof. P assigns positive measure to the trivial subspace {0}, hence
it is easy to see that X satisfies (4). It is also clear that the Gaussian part
of X in its Lévy decomposition vanishes.

Let us end this chapter by noticing that if X satisfies the conditions
of Corollary 3.2 and the condition L(T x (R~R')) = 0 mentioned after
the proof of Lemma 3.7, then the statement of Theorem 3.1 is valid for
any F which need only to be assumed additive and «f*-measurable.
This follows since in the chain of reasoning, that led up to Corollary 3.2,
only Lemma 3.10 made use of the homogeneity of F, i.e., of the fact that
F(ar) = aF(x) for all ae R and x € 8.

4. Extensions and counterexamples. Theorem 3.1, as it stands, cannot
be applied to a sequence X,, n>1, of independent random variables
since hypothesis (2) is not satisfied. But to handle this case, simpler meth-
ods suffice. For the time being let § = Rx R x ..., the linear space
of all sequences of real numbers. Let o/ stand for the o-field generated
by the projections X,. (f # = (o,,...,2,,...) €S, then X, (z) =2,.)
Let P denote the probability measure, induced on (8, /), that is uniquely
specified by assigning distributions on R", in a consistent way, to all
random vectors X, ,..., X, , where n,, ..., n; are positive integers. Let
&* denote the completlon of o with respect to P. The set of real-valued
linear functionals on § that are «/*-measurable will be denoted by S*.

THEOREM 4.1. If X,, n>1, is a sequence of independent random
variables, and if (4) is satisfied, thefn for every F in 8* there exists a sequence
o0

€,y n =1, of real numbers such that > ¢, X, is unconditionally convergent
1

(.., convergent under all reorderings) and
F = Zc_nX.n a.s.
1

Pr’obf. For z = (%), ..., 23, ...) in 8, let
Qr(z) = (0,...,0,2,,0,...).

Then there exists a real number ¢, such that F(Q,(x)) = ¢ Xy ()
for all # in 8. So, for all n,

Qk) =
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Let us write

Y,(2) = F(o— Z"‘qk(w)).

Then Y, is independent of X,,..., X, and

n
Y”—l—zckxk = F au.S.'
1

From Lemma B it follows that there exists a sequence of constants d,
such that _gc,,Xk—dk is eonvergent and, in fact, by [10], 37.1c, we can
assume tha,lt we have chosen d, in such a way that the series is uncon-
ditionally convergent. Using hypothesis (4) we conclude that fc,,X,,
is itself unconditionally convergent. Now ¥ —f‘ ¢, X, is independent lof X,
for any positive integer n; it follows from tllle well-known 0-1 law that

F—) ¢, X, is constant a.s. By hypothesis (4),
1
F = chxk a.8.
1

We now use Theorem 4.1 to extend Theorem 3.1. Suppose that
(X(¢),teT), 8, o, P are as in Section 1, but we assume that X satisfies
only (1), (3), and (4). It follows that X is centered decomposable, i.e.,
for a constant ¢ and for any ¢ € 7 which is a limit point from the right
(the left) the limit X (t+) (X (¢—)) exists a.s. and if X(t+)—X(t) = ¢
(X(¢)—X(t—) = ¢), then ¢ = 0. Indeed, by [10], 37.3a, there is a real-
-valued function ¢(¢) with. ¢(0) = 0 such that X (¢) —ec¢(t) is centered de-
composable. But from (4) it follows that X (¢) itself is centered decom-
posable.

The existence of limits in probability from the left and from the
right implies that the set of fixed continuities of X (¢) is eountable. Let
us denote this set by {t;: j =1,2,...}. Let

y =X()-X(t—) and ¥, = X(4+)—X(1).

By [10], p. 543, there exist constants ¢; and d; such that, for every
interval I < T," 2 (U;—¢;) and Z‘ (V;—d;) are uncond;tlonally con-

vergent. By (4), th.ls implies that the series > U; and D V; are uncon-
ditionally convergent. 4el tel
It follows that

X(t) = X))+ X°() a5, where X% = 3 U+ YV,

0<lj<‘ 0<tj<‘

9 — Colloquium Mathematicum XXXVTIII.2
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and where X° satisfies (1)-(4) and is independent of X%. (This is Lodve's
Decomposition Lemma, see [10], Lemma 37.2d.)

THEOREM 4.2. Suppose that (X (t),teT) satisfies (1), (3), and (4).
Let F be in 8*. Suppose that the Gaussian part of X° in its Lévy decompo-
sition vanishes. Then there are a Borel measurable function f which is X°-
-mtegmble and sequences of real numbers a; (j > 1) and b; (j > 1) such

that Zaj U; and Zb, V; are unconditionally convergent and, furthermore,

F = [f(t)aXx()+ ja, U; + Z”b, V; a.s)
T. 1 1

Proof. Let P° denote the measure on (8, &) corresponding to the
process X°, and let P? denote the measure on (S, o) corresponding to
the process X% Let /¢ denote the completion of «f with respect to P°,
and ¢ that of o with respect to P%. By Lemma 3.3 we conclude that F
is «/%measurable and is also «/°-measurable. Now Theorem 3.1 implies
that there is some Borel measurable function f such that

F = [f()dX°(t) P° as.,
T

where f is X—integra.ble Also Theorem 4.1 implies that there are sequences

a;, b; € R such that Za, U; and Zb, V; are unconditionally |convergent
and such that

0o

F=Da U,+§’ijj P as.
1

1

(Define a; to be F(x;), where x;(t) = 0 for ¢ < ¢;, and x;(¢) =1 for
t > t;. Define b; to be F(y;), where y;(?) = 0 for ¢ < #; and y;(¢) =1 for
t>t.)

Now there exist linear measurable maps

n: (8, &% P) > (8, o) fori=1,2j

such that Pn[! = P% Pa;! = P°, and ;:I(w)+u2(m) =g for all z €8.
(We skip the details of verifying this.) It follows that

F(r) = Fom(¢)+ Fomy(w) for all z e 8.

Now we have just seen that

Fom = ) (U;+hV) as. and Fom, — [f()AX*(t) as.
1 . ) T
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It is natural to ask just how much of a restriction is hypothesis (4).
For instance, given X satisfying (1) and (3), can we find a real-valued
function g such that X — g satisfies (1), (3), and (4)% The answer is no.
For instance, let X, be a sequence of independent, identically distributed
random variables such that

\

E(exp[iuX,]) = exp [ f (e“”—l—isu)%ds+ f (e““—-l)%ds].
0 1

Then X,+ ... + X, is distributed like nX, 4 nlogn (see [8], p. 202).
Now consider X, — ¢, for any sequence c, of real numbers. If there exists
some subsequence n’ such that [c,.| > oo, then (X, .—¢,)/c,- > —1 in
probability, contradicting (4). If, on the other hand, |¢,| < M for all n,
then

n

Zxk_ck

1

—_— 1
nlogn

in probability, again contradicting (4). We see that for no sequence ¢,
the difference X, —c, satisfies (4).

Let us now consider the necessity of hypothesis (4) in Theorem 3.1.
Suppose that (X (t), t € [0, o0)) is the standard Poisson motion, i.e., X (t)
satisfies (1)-(3) and

E(exp [t X (1)]) = exp[t(e™—1)].

Let F, be a sequence of elements of §* defined by F,(z) = n“(w(n))
for 2 € 8. By the law of large numbers, F',, — 1 in probability. By Lemma 2.1,
there is an element F of 8* such that F, — F in probability. It follows
that F = 1 a.s. Now it is clear that there is no X-integrablé function f
such that

1= [f)dX(t) a.s.
T

We now consider the necessity of the condition that the process X
has no Gaussian part Y. Suppose, for instance, that ¥ (¢) is the standard
Brownian motion, i.e.,

E(exp[iuY (1)]) = exp[—%tuz] for t [0, o).

Suppose that Z, and Z, are independent copies of the standard Pois-
son motion, also independent of Y. Write X (t) = Y (f) +Z,(?) —Z,(t) for
t € [0, oo0). Then X (¢) is a symmetric process and satisfies (1)-(4). Define ¥
in 8* by setting F (x) to be the sum of the jumps of 2 up to time 1. The



304 M. KANTER

distribution of F' is the same as that of Z,(1) —Z,(1), in particular, it is
discrete. On the other hand, it is clear that, for any X-integrable function f,
ff(t)dX (t) has no discrete distribution except for the trivial one with
T

all mass at {0}. We conclude that the condition that X has no Gaussian
part is necessary in Theorem 3.1.
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