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Random differential inclusions:
Measurable selection approach

by A. Nowak (Katowice)

Abstract. We study the Cauchy problem for the random differential inclusion

x'€F(w, t, x). We prove the existence of an absolutely continuous solution which depends
measurably on the random parameter.

1. Introduction. in this paper we studv the Cauchy problem for the
random differential inclusion x' € F(w, 1, x), where w is 4 random parameter
and F a given set-valued mapping. We look for an absolutely continuous
solution which depends measurably on w.

It seems that the study of random differential inclusions was tnitiated by
Castaing [1], [2] (see also [3]). There are three main approaches to this
problem: a “parametrization” of proofs for deterministic differential inclu-
sions, application of random fixed point theorems for set-valued random
operators, and measurable selection approach.

The first approach was recently adopted by De Blasi and Myjak [5].
The second method was applied by Phan Van Chuong [4]. Fryszkowski [7]
and the author [I1].

In this paper we adopt the measurable selection approach. In the main
result we assume that [or almost all values of the random parameter the
corresponding differential inclusion has a deterministic solution and prove
that this solution can be chosen in the measurable way. We illustrate the
application of this theorem by two examples. Similar approach was already

used by the author [12] in the study of continuously differentiable solutions
of random differential inclusions.

2. Preliminaries. Throughout this paper. (2, .«/, P) is a probability space
and T an interval on the real lire R. For a metric space X, #(X) denotes the
family of all nonempty subsets of X. By A(X) and #(7) we mean,
respectively, the Borel o-ficld on X, and the Lebesgue o-field on T

Kcy words. Random solutions, differential inclusions, measurable selection.
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Let F: Q - #(X) be a set-valued mapping (i.e, multifunction). The
graph of F is defined as

GrF = |(w,x)eQ xX: xeF(w)!.
A multifunction F is said to be measurable if for each open G = X
‘weR: F(w)nG # Q) e.o/.

(Note that such a map 1s called weakly measurable by Himmelberg [9].)

2.1. ProrosiTION. Let X be separable. Then:

(i) F is measurable iff v —d(x, F(w)) is a measurable function of w for
each xeX.

(i) If F is measurable and closed-valued, then GrF is .o ® 4(X)-
measurable.

Proof. See Himmelberg [9], Theorem 3.3.

We shall use the following measurable selection theorem:

2.2. THEOREM. Suppose X is a Souslin space (i.e., continuous image of a

Polish space). If GrFe./ ® #A(X), then there exists a measurable function
S Q@ — X such that f(w)€eF(w) P-almost surely.

Proof. See Sainte-Beuve [14], Theorem 3 or Himmelberg [9], Theorem
5.7.

Let Y be a metric space. A multifunction H: X — #(Y) 1s closed if its
graph is a closed subset of X xY.

The generalized Hausdorff metric on # (Y), the family of all closed and
nonempty subsets of Y, is defined by

D(A, By = max 'sup 'd(y, A): yeB), supd(y, B): yeA!).

We say H: X — .#(Y) 1s continuous if it is continuous with respect to the
generalized Hausdorfl metric.

A function f: QxX =Y 1s a Carathéodory map if, for each weQ,
S (w, *) is continuous, and for each veX, f(-, x) is measurable. It is well
known that if X 1s separable, then such a mapping f is product-measurable.
An analogous fact holds for multifunctions.

2.3. ProrposiTiON. Suppose X is separable. If F: Qx X — Z(Y) is
measurable in w and continuous in x, then F is product-measurable.

Proof. It suffices to show that f'(w, x) =d(y, F(w, x)) is a measurable
function for each yeY. Because of Proposition 2.1(i), f is measurable in w.
Since

‘(I(_v, F(w, x))—=d(y, F{om, xz))l < D(F(w, xy), F(w, x5)),  x;, x,€X,

fis continuous in x. Hence, f is product-measurable.
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For A < R", we introduce the notation |4| = sup i|a|]: aeA), where || is
the Euclidean norm in R"

Suppose T is a compact interval. Denote by AC(T) the space of all
absolutely continuous functions x: T — R" endowed with the norm

[IxI] = sup ilx(@): 1€ Ti+ [Ix'()fdt.
T

By I(T) we mean the space of all integrable functions x: T — R" with the
norm

lxlly = {1x(0)lde
T

(we identify equivalent functions). AC(T) and L(T) are separable Banach
spaces.

The abbreviation a.e. ts used for almost everywhere.

3. Main result. Let T be a compact interval on R and U an open subset
of R". We shall study the Cauchy problem for the random differential
inclusion

(1) (w, eF(w, t, x(w, 1)),

EX
(2) X((U, r()) = U((I)),

where the set-valued mapping F: Q x T xU — 2(R"), the map v: Q - U and
1,€T are given.

3.1. DeriniTiON. A function x: @ x T = U is called a random solution of
problem (1}H2) if it is measurable in w, absolutely continuous in ¢. and for P-
almost all w €Q conditions (1)-(2) hold ae. in T

We shall prove a general existence theorem for problem (1)2). Assume:
(A) For P-almost all @ e the deterministic Cauchy problem

(A)) y(t)eF(w, t, y(1),
(Az) y(to) = v(w)

has an absolutely continuous solution defined on T.
(B) Fis o/ ® ¥(T) ® #(U)-measurable and closed-valued.
(C) v is measurable.

3.2. THEOREM. If the Cauchy problem (1}{2) satisfies assumptions (A), (B)
and (C), then it has at least one random solution.

Proof. We can assume that for each w€Q the deterministic problem
(A,HHA,) has a solution. Define the set-valued mapping

H(w) = |yeAC(T): y satisfies (A;}{A,) ae. in T}, weQ.
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In order to apply the measurable selection theorem, we shall prove that H
has a measurable graph.
Write

Y = yeAC(T): y(n)eU for all reT!.
It is immediate that Y is an open subset of AC{7). Nute that

GrH = |(w, y))eQxY: j'd(y’(t), F(w, 1, y(’f)))'dt +{y(to)—v(w) =0!.
7

Let the functions f: @ xY xL(T) >R and ¢g: 2 xY —R be defined by
f(w,y.2)= l[d(z(t), Flo,t, y(t)))dt +y (1) —v(w),
T

g(w.y) = flw, y, ).

We prove that f and g are product-measurable.

Since F is measurable, for each w eR" the map (w, t, u) = d(w, F(w, t, u))
is measurable with respect to the o-field  ® ¥ (T) ® .4 (U). Note that
(t. ¥) = v(t) is a continuous mapping from T x Y into U. Thus the function
(w,t,y) —»d(w, F(w,t, y(0) is / ® ¥(T) ® #(Y)-measurable. Consequent-
ly, for each z e L(T), f(, z) is ./ ® #(Y)-measurable. Now, let (w, y)eQ xY
be arbitrary but fixed. It is an immediate consequence of definition that
either f(w, y,) = +o¢ or f(w, y, ) has finite values. In the second case
we have

1f (@, v, 20)= (@, y, 22l < [Jd(z,0). Fleo. 1, y))—d (2,0, F(o, t, y(0)))|dt
T

< flzi () =z, (0l dt = ||zy — 2zl
T

for any z,, z, e L(T). Hence, for each (w, y)eQ xY, f(w, y, -) is continuous
as an extended real-valued function. Being a Carathéodory map, f is
oA @ A(Y) ® A(L(T))-measurable. The operator y =)' from Y to L(T) is
continuous. Thus ¢ is measurable as a composition of measurable functions f
and (w, y) =(w, v, V).

The measurability of g implies GrHe / ® 4(Y). In virtue of Theorem
2.2, there exists a measurable map h: Q — Y such that h(w)eH{w) as. The

function x(w. 1) = h(w)(t) 1s a required random solution of our problem. It
completes the prool.

33. Remark. The same measurable selection approach can be applied
to the random functional-differential inclusion

{
%.\'((u, neF(ow, 1, x(w, "), teT,
¢



Random differential inclusions 295

x(m, y=rv(w,1). 1€5.\T,

where F: QxT xC(S) > .2(R" and v: Q x{(S\T) = R" are given, S and T
are intervals such that T < §, and C(S) stands for the space of continuous
functions from S to R". The existence of random solutions for this problem
was studied by Fryszkowski [7], [¥].

4. Applications. By use of Theorem 3.2, [or each existence result for a
differential inclusion we can obtain its random analogue. As the first example
we give a probabilistic version of the global result of Lasota and Opial [10].

4.1. THEOREM. Let T be a compact interval on R and F: Q@ xT xR"
— 2(R") a set-valued map. Suppose:

(1) F is convex-valued, for each (w.t)€Q x T the multifunction F(w. t, )
is closed, and for each ueR" the multifunction F(-,u) is o @ L(T)-
measurable.

(1) For each weQ there exist integrable functions a,, b,: T — R such
that

\F (o, 1. ) < a,,(t)+b,, () |u].

Then for each to €T and each measurable v: Q — R" the Cauchy problem (1)-
(2) has a random solution.

Proof. We cannot apply Theorem 3.2 immediately since F is not
necessarily product-measurable. By [13], Theorem 1, there exists a convex-
valued multifunction F: Q x T x R" = #(R") which is  ® L(T)® #A(R")-
measurable and such that }':(w, t,u) < F(w,t,u),and u —»I-:(a), t, u) is closed
for each (w, 1) eQ2 x T Because of the result of Lasota and Opial [12], for
each w eQ the deterministic Cauchy problem

Y (O eF(w, 6, y(0),  ¥(tg) = v(w)

has an absolutely continuous solution on T. An application of Theorem 3.2
with F completes the proof.

This 1s a slight generalization of Theorem 5.2 from [11], which was
obtained by an application of the random Kakutani-Ky Fan fixed point
theorem.

Now we derive from Theorem 3.2 a local existence result for a random
differential inclusion with nonconvex right-hand side.

4.2.- Tucorem. Let T be an open interval, U an open subset of R", and
F: QxTxU — #(R" a set-valued mapping. Suppose:

() F is compact-valued and there is a constant M >0 such that
Flw. ol < M for all weQ. 1eT, uel.

(1) For each weQ, F(m. ) is continuous. and for each (t.u)eT xU,
F(-.i,u) is measurable.
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Then for each ty €T and each measurable v Q — R" satisfying

WeR™ [u—v(w) <b, cU, weQ,

for some positive b, the Cauchy problem (1}-(2) has at least one random
solution defined on Q x[to—d, to+d], where d > 0.

Proof. In virtue of Proposition 2.3, F is product-measurable. By the

result of Filippov [6] for each weQ the deterministic Cauchy problem

Y eF(w, 1, y(1), ylig) = v(w)

has an absolutely continuous solution on the interval I = [to—d, to+d],
where d = min |a, b/M), and [t,—~a.to+a] © T. Now the application of
Theorem 3 2 completes the proof.

[1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]

(91
[10]

[11]
[12]

[13]
[14]

References

C. Castaing, Version aléatoire du probléeme de rafle par un conrexe variable, C.R. Acad.
Sci. Paris 277 (1973), 1057-1059, and Séminaire d’Analyse Convexe, Montpellier 1974,
Exposé No. 1.

—, Rafle par un convexe aleatoire a variation continue d droite, Séminaire d'Analyse
Convexe, Montpellier 1975, Expos¢ No. 15.

— and V. Valadier, Convex Analysis und Measurable Multifunctions, Lectures Notes
No. 580, Springer Verlag, 1977.

Phan van Chuong. Existence of solutions for random multivalued Volterra integral
equations, 1 and II, J. Integral Equations 7 (1984), 143-173 and 175-185.

F. S. De Blasi and J. Myjak, Random differential inclusions with nonconvex right-hand

side, submitted.
A. F. Filippov, The existence of solutions of multivalued differential equations (in Russian),

Mat. Zametki 10 (1971), 307-313. English translation: Math. Notes 10 (1971), 608-611.
A. Fryszkowski, A general existence theorem for functional differential inclusion, submit-
ted.

—, Curathéodory type selections for some nonconvex multivalued maps and their applica-
tions to random multivalued differential-funcrional equations, submitted.

C. J. Himmelberg., Mcasurable relations, Fund. Math. 87 (1975), 53-72.

A. Lasota and Z. Opial, 4An application of the Kukutani~Ky Fan theorem in the theory
of ordinary differential equations, Bull. Acad. Pol. Sci. Math. 13 (1965), 781-786.

A. Nowak, Applications of random fixed point theorems in the theory of generulized
random differential equations, ibidem 34 (1986), 487-494.

—, On generalized random differential equations, Demonstratio Math. 16 (1983), 469—476.
A. Plis, Measurable orientor fields, Bull. Acad. Pol. Sci. Math. 13 (1965), 565-569.
M. F. Sainte-Beuve, On the extension of von Neumann—Aumann's theorem, J. Funct.
Analysis 17 (1974), 112 129

INSTITUTE OF MATHEMATICS.
SILESIAN UNIVERSITY
KATOWICE. POLAND

Regu par la Rédaction le 30.05.1987



