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1. Introduction. Throughout this paper (!) we shall assume the
reader is familiar with the definitions and basic facts about chain com-
plexes, chain mappings, the homology of a chain complex, and the sin-
gular homology of a topological space. We shall use the definitions and
notation of [1]. The singular chain complex of a topological space X
will be denoted by C(X) and the barycentric homomorphism by g. If
f:C — C is a chain mapping of the chain complex C into itself and K
denotes that subcomplex of ¢ which is the kernel of f, then f is said to
have an acyclic kernel if and only if K is an acyclic chain complex, i.e.,
H,(K) = 0 for each p.

In [2] Fadell has shown that the kernel of the barycentric homo-
morphism is acyclic. This condition is not implied by the fact that .
(the homomorphism that g induces on H(C(X))) is an isomorphism nor
even by the fact that B ~ 1 (8 is chain homotopic to the identity homo-
morphism). It is implied by the fact that there is, as Fadell shows, a chain
homotopy connecting § and 1 which is stable with respect to the kernel
of B. Precisely, there is a homomorphism ¢ :C(X) — C(X) such that
(1) o has degree 1, (2) g0+ dp = 1—8, and (3) o(K) <« K, where K is
the kernel. When the condition given in (3) holds we say that p is stable
with respect to the kernel of S. Later we shall consider this notion in
a more general setting.

The result that the kernel of g is acyclic is used in [2] to obtain an
“unessential identifier” for C(X). For any chain complex C and sub-

(1) Many of the results in this paper are contained in a thesis submitted to the
faculty of the University of Wisconsin in partial fulfillment of the requirements for
the Ph. D. degree, August 1962.
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complex K it is shown in [3] that K is acyeclic if and only if =, is an iso-
morphism where n: C - C/K is the natural projection of C onto the
factor complex C /K. Thus, an unessential identifier for ¢ is a subcomplex
which can be factored out without affecting the homology. It is not
hard to show that the kernels of the iterates of g, i.e., p%= fop,
p3 = Bopop, etc., form a properly increasing sequence of subcomplexes
of C(X). We show in § 3 that they are all acyeclic. Thus their union can
be used to obtain an unessential identifier for C(X) which is larger than
that given in [2].

In §2 we give some examples and facts about acyclic kernels for
arbitrary chain complexes.

2. Facts and examples about acyclic kernels. The following theorem
gives a condition equivalent to the kernel being acyclic for a chain map
f:C — C such that f, is an isomorphism:

THEOREM 2.1. If C = {C,, 0} is a chain complex, f: C — C is a chain
mapping, K = {K,, 0} is the kernel of f, and ¢ : f(C) — C is the inclusion
homomorphism, then any two of the following conditions imply the third:

Condition 1. i, is an isomorphism.

Condition 2. K 8 acyclic.

Condition 3. f, is an isomorphism.

Proof. Let f: C,/K, — f(C,) be defined by f([#]) = f(x). Now the
theorem immediately follows from the commutativity of the following
diagram and the fact, mentioned earlier, that K is acyclic if and only
if z, i3 an isomorphism:

1,(0/K)J%, 1, ((0) 2 ,(0)
Ty
H,(C)

Some examples illustrate the relationships between the conditions
given in Theorem 3.2. In [3] Rad6 gives an example which illustrates
that K may fail to be acyclic even when f ~1 (and thus f, = 1). Hence,
Condition 3 does not imply Condition 2. That Condition 2 does not imply
Condition 3 is demonstrated by the following example.

Example 2.2. Let a chain complex C = {C,, 0} be defined as
follows:

Cp, = 0 for p > 2 and for p < 0.
C, = ((t)), the free abelian group with one generator, t.

C, = ((#)), the free abelian group with one generator, 2.
0:C —C is given by 0(f) =2z and 0(Cp) = 0 whenever p # 1.
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A chain mapping f:C - C is given by the relations f({) = 2¢
and f(2) = 2z.

Note that if K, is the kernel of f|C,, then K, = 0 for every p and,
hence, K = {K,, 0} is acyclic. However, H,(C) contains an element
[2] # 0 while f.([2]) = [f(2)] = [22] = 0. Thus f is not an isomorphism.

Example 2.3 shows that Condition 1 does not imply Condition 3.

Example 2.3. Let C, = ((ay, a,, a5, ...)), the free abelian group
generated by an infinite countable set, and C, = 0 for p # 1. Let the
boundary operator be defined by d(x) = 0 for all . Define a chain map
f:C - C so that f(a,) = f(a;) = a, and f(a;) = a;_, for j > 3. In this
case H,(C) = C, for each p. Furthermore, 7, is an isomorphism but f,
i8 not 1-1.

A chain complex C is said to be free provided that C, is a free abelian
group for each p. It is well known (2) that if f: C — C, C is free, and f.
is an isomorphism, then f is a chain equivalence. Using this fact and
Theorem 2.1 we obtain the following corollary about the chain complex
C®G obtained from tensoring a free chain complex C with an abelian
group G. For f: C - C, f®1 denotes that chain map of CQG into itself
defined by f(2®g) = f(2)®g. ,

CoROLLARY 2.4. Suppose that f: C — C is a chain map of a free chain
complex C into tiself, fo i an isomorphism, and f has an acyclic kernel.
Then the chain map fR1: CRG — CRG has an acyclic kernel.

Proof. By Theorem 2.1, 4, is an isomorphism where <:f(C) — C.
Since both of C and f(C) are free chain complexes, f and ¢ are both chain
equivalences. It follows that (f®1), and (¢®1), are both isomorphisms.
Note that here i®1 : f(C)QG -~ CRG. However, f(C)RG = (f®1)(CR®G),
if we consider f(C)®@G as a subgroup of CQG. Now, applying Theorem
2.1 to the chain complex C®G, we conclude that the kernel of f®1 is
acyeclic. ,

Next we give an example which deals with the iterates of a chain
mapping. Example 2.5 shows that for every integer » > 1 there is a chain
complex ¢ and a chain mapping f:C — C such that f ~1 (and thus
f* ~1 for each k), the kernel of f* is acyclic for k s n, but the kernel
of f* is not acyeclic.

Example 2.5. Let » be a fixed integer greater than 1. (An easy
modification works for » = 1.)

Define a chain complex C = {C,, 0} as follows:

Cp =0 for p >2 and p < 0.

Cy = ((81 82, ..., 8a)), the free abelian group with the n generators
81y 85y eeny Sne

() For example, sco p. 192 of [5].
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Oy = (@) @1y .oy @ny by, by ...y byy)), the free abelian group with
the 2n generators shown.

Co = ((#1, @, ..., #)), the free abelian group with the n generators
shown.

0:C — C is given by
0(Cp) =0 for p>2and p<1,
0(s1) = ay,
0(8) =aj_,—b_, for 2<j<m,
d(a;) =0,

d0(a;) =a; for 1 <j<n,

<
ab) —=a; forl<j<mn—L.

Define a homomorphism f:C — C as follows:

f(Cp) =0 for p >2 and p < 0.

f1C, is given by f(s;) = 0 and f(s;) = s;_, for 2 <j < n.

£10, is given by f(ag) = f(b)) = 0, f(a;) = as_, for 1 <j <n and
f(b;) =b;_, for 2 <j<n—1.

f1C, is given by f(x;) = 0 and f(x;) = #;_, for 2 <j < n.

It is easy to show that f is a chain mapping.

Define a homomorphism g : C — C as follows:

0(Cp) =0 for p >1 and p < 0.

0|0, is given by g(z;) =bj—a;_, for 1 <j<n—1 and o(z,) =
Ap— Qp 1.

0|0, is given by o(a;) = s;,, for 0 <j<n—1, o(a,) = 0 and p(b;)
=g for 1 <j<n-1.

It can be verified that ¢d 4 0d¢ = 1—f. Hence f ~ 1.

Hereafter, ((41,Ys,...,¥n)) will be used as above to denote the
free abelian group with the m generators y,, ¥s, ..., ¥m. Also K’ = {K}, 0}
will denote the kernel of f’.

A consideration of the definition of f shows that the kernels are as
follows:

K, = 0 for all j whenever p < 0 or p > 2.

K} = ((81) 82y ---,8)) for 1<j<n—1 and K} =0, for j>=n.

K] = ((a0y ey @j_1,byy ...y b)) for 1 <j<n—1, KEF = ((@g,..r) Cn_y,
biy ..oy bu_y)), and K = C, for j >n+1.
Kj = (4, ..., ;) for 1 <j<n—1 and K} = C, for j > n.

Since K = 0 for all j whenever p >2 or p < 0, H,(K’) =0 for
all j whenever p >2 or p < 0.
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Since C, contains no cycles, H,(K’) = 0 for all j.
For the case p =1, K~ Z, = ((a)),

Kl A Z, = ((ao, ay—by, ay—by, ..., a:'—l'—by'_l)) for 2<j<n
and _ '
Ki~Zy = (@) 01— by, @3—bgy ..y @u_1—by_y)) forj=n

Consideration of the definition of d shows that 9(K}) = Kj ~ Z,
for every j. This implies that H,(K’) = 0 for every j.

For the case p = 0, C, = Z, and thus K} ~ Z, = Kj. Consideration
of the definition of 0 shows that 0(K’) = K} whenever j = n. Hence
Hy(K') =0 for all j = n. However, z,eKy ~ Z, and x,¢d(K?) so
H,(K") #0.

3. The kernels of the iterates of 8 are acyclic. We start by giving

a brief discussion of the notation which we shall use. Let £, denote the
set of all square summapble real sequences with the usual topology. Let d,,
d,, d,, ... denote, respectively, the points (1,0, 0,0,...),(0,1,0,0,...),
(0,0,1,0,...),... in E_. If vy, vy, v5,..., v, are any p+1 points in E,
then (vyv,...7v,» denotes the convex hull of these points. We set
dp, = {dyd, ... dy>. For any topological space X, C,(X) is the free abelian
group generated by all continuous mappings 7': 4, - X. For any p+1
points vy, vy, ..., v, in E_, [v,0; ... v,] Will stand for that linear map L
of 4, into E with the property that L(d;) = v; for each ¢ and b(v,, v,, ...
..y Up) Wwill denote the barycenter of the p-+ 1 points, i.e., the point
(vo+v1+...4+vp)/p+1. We shall assume familiarity with the barycentric
homomorphism g : C(X) — €(X). In any case it suffices, for our purposes,
to state that for T': 4, - X, B(T) = D sgno (To[o]), where P, is the

aePn

set of all permutations of the set {0, 1,2, ..., n} and for o = (ig, 1y ...y tn)
ePy, [o] = [d;,, b(diyds), b(dtodtldlz) o b(did; ... d; )] and sgne is 1
when o is even, and —1 when o is odd.

Straightforward computation yields the following useful lemma.

LEmMMA 3.1. If X is a topological space, T is a map of 4, into X,
and L is a linear map of A, into A, such that L(d;) = L(dy) where d; and dy
are distinct vertices of A,, then B(ToL) = 0.

The following notation will be used hereafter: If » > 0 and f: 4, — 4,
is @ map such that fo [¢]is linear for every ¢ e P,, then D(n, f) = {ceP,|fo[a]
agrees on two distinet vertices of 4,}. Note that D(0,f) =0 for any
map f from 4, to 4,.

LemMA 3.2. If X is a topological space, T is a map of A4, into X
with n >0, and f: 4, — A4, 18 a map such that fo[co] is linear for every
ceP, and J = P,— D(n,f), then

p2(Tof) = Z'( y(sgna )(sgnt)(Tof) o[a]o[r])

oeJ nP.,,_
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Proof. Write f2(Tof) = B(8(Tof)) = B(A+ B) = (A)+ B(B) where
A= ngna((Tof)o[a]) and B = 2 sgno((Tof)o[o]).

oeJ aeD(n,f)

If geD(n, f), then fo[o] agrees on two distinct vertices of 4,, and thus
satisfies the hypothesis of Lemma 3.1. It follows that g((Tof)o[cs]) = 0.
Thus g(B) = 0 and

B2(Tof) = p(4) = () sgno((Tof)o[o]))

oeJ

= D'( D (sgnv)(sgno)(Tof)o o]0 []).
Py, odeJ

The order of the summation signs may be changed proving the lemma,

Definition of f,: 4, - 4,. For each integer n >0, f, is to be
a map with the following three properties:

P-1. f,o[o] is linear for each oeP,, i.e., f, is linear on the first bary-
centric subdivision of 4,.

P-2. If o, is the identity permutation in P,, then f,o[g,] is the
identity map.

P-3. If ¢ is not the identity permutation in P,, then ceD(n, f,),
i.e., foo[o] agrees on two distincet vertices of 4,.

The f, are to be defined inductively. Roughly, letting o, be the
identity permutation in P,, f, is to expand the “o,piece” of 4, onto
all of 4, in a natural linear manner while collapsing the other pieces
linearly into the boundary in such a way that for each such piece two
distinct vertices are mapped into the same point. This is illustrated as

follows for n = 2.
- A

Precisely, we use the fact that 4, < 4, « 45..., set fo(d,) = d,
and define f, to be linear on the first barycentric subdivision of 4, with
Joldn_y = fa_1 and f,(d) = d, for each d which is a vertex of the first
barycentric subdivision of 4, and is not in 4,_,.

Properties P-1 and P-2 are easily verified from the definitions. We
give an inductive proof that P-3 is satisfied.

Proof of P-3 is trivially true when = = 0. Assume that
P, ,—D(n—1, f,_,) contains only the identity permutation. Now let
oceP, with ¢ # the identity. Either the o-piece of 4, has a face in 4,_,
or it does not; these two cases are considered as follows.
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In the first case, since ¢ i3 not the identity, there is a veP,_, such
that v is not the identity and [¢]| 4._, = [r]. But then, by the inductive
assumption, reD(n—1, f,_,) and f,o[o]|dn_, = fu_10[t] agrees on two
distinet vertices of A4,_,. Thus f,o[oc] agrees on two distinct vertices
of n and oeD(n,f,).

In the second case, ¢ = (%g, %1y ..., %») Where i; = n for some j < n.
Hence [0](d;) = b(dyd;, ... d;))¢An_ and [o](dn) = b(diydi; ... di) ¢ dn_y.
By definition (f,o[¢])(d;) = (fno[c])(ds) = d, and it is proved that
oeD(n, fr).

THEOREM 3.3. If C(X) = {Cn(X), 0} 8 the chain complex of sin-
gular chains of a topological space X and f is the barycentric homomorphism,
then B(C(X)) = p/(0(X)) for every positive integer j.

Proof. Note that B(C(X)) o B*(C(X)) o p3(C(X)) = ... Therefore
it remains to show that B(C(X)) = B2(C(X)) = 3(C(X)) < ... or, equi-
valently, simply that (C(X)) < £2(C(X)).

Let Te(C,(X) be an arbitrary generator of C(X) and let f,: 4, — 4,

be the map defined above.
By Lemma 3.2,

BuTofu) = > (3 (sgno)(sgnv)Tofuololols]).
oePp—D(n,1y,) 1Py
Applying P-3,
B*(Tofa) = D sgnz(Tof)olgelo[7],

Py -
where o, is the identity permutation in P,. Applying P-2, f,o[c,] is the
identity map and
BH(Tcfa) = ) (sgnr)To[z] = B(T).

Py

This shows that ﬂ(T)eﬂz(C(X)) for any generator T of C(X) and
thus that 8(C(X)) < p2(C(X)).

THEOREM 3.4. If C(X) is the chain complex of smgular chains of
a topelogical space X, f is the baryceniric homomorphism, j is a pos-
itive integer, and K’ denotes the kernel of chain mapping £, then K’
18 acyclic.

Proof. Consider the following diagrams, where ¢, 7', and '’ are the
inclusion chain maps:

H(f(c(X)% a1 (c(x)

H(p(C(x)) )
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By Theorem 3.3, ¢’ is an isomorphism of §(C(X)) onto B(C(X))
and thus 4, is an isomorphism. Also, f is an isomorphism and Fadell
proved in [2] that the kernel of § is acyclic. Hence, by Theorem 2.1,
i» i8 an isomorphism. Then the commutativity of the diagram yields
the conclusion that 4, i3 an isomorphism. Applying Theorem 2.1 again
gives the result that K’, the kernel of g7, is acyclic and completes the
proof of the theorem.

4. On chain homotopies which are stable with respect to the kernel.
If f: C - C and there is a chain homotopy g connecting f and 1 which
has the property that ¢o(K) < K, where K is the kernel of f, then it is
easy to show that K is acyclic. In fact, we stated earlier that Fadell
used such a homotopy to show that the kernel of § is acyclic. It might
be difficult to apply this technique to A2 since the usual chain homo-
topies connecting B2 and 1 are not stable with respect to the kernel. For
example, if p is the chain homotopy connecting § and 1 given in [4] and
0 = o+ 0B, then g is a homotopy connecting 4% and 1 which is not stable
with respect to the kernel. Stable homotopy operators for 2 do exist,
however, as the following theorem implies:

THEOREM 4.1. If C is a free chain complex and f is a chain mapping
from C to C such that f ~ 1 and the kernel of f is acyclic then there is a chain
homotopy connecting f and 1 which is stable with respect to K, the kernel
of f.

The following known result (3) is useful in proving Theorem 4.1.
We state it as a lemma.

LeMMA 4.2. Given the hypothesis of Theorem 4.1, there is a chain
mapping g:f(C) - C such that fog = 1.

Proof of Theorem 4.1. ZX and BY will denote the p-cycles and
p-bounds, respectively, of K. Since BX_, is a free abelian group for every p,
there is a homomorphism r of degree 1 from X By to XK, and, for every p,

a split exact sequence 0 — Zg 2 K, é BE | -0, where j is the inclusion
homomorphism. !‘u_rthermore, since K is acyclic, Hy(K) = 0 and ZX = BX
for every integer p. Thus we can write that the sequence 0 ——>Z,lf - K,
é ZE | - 0 is split exact. Then K, = Zx®r(Z5_,) is the direct sum of
two of its subgroups.

Define a homomorphism 7 of degree 1 from XK, to XK, by consi-
dering k = 2+ 7(2’) e K, with zeZ; and r(2')er(Z;_,) and setting #(2+7(2’))
=7r(2)eKy, ;.

(3) Seo cxercise on p. 158-9 of [1].
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Note that 7|ZZ5X =r and 7or = 0 and recall that dor = 1. It
follows that for zeZ; and 2'eZy;, 7(0(2) =r(0) =0, F(a(r(z’)))
= 7)) =r(2), 0(F(2) =0(r(2)) =2, and 8(F(r(z")) =0a(0) =o.
Combining these results yields (704 07)(2+r(2")) =r(2')+2. Thus
ro+or = 1.

From the hypothesis that f ~ 1 there is a homomorphism g of degree 1
from XC, to XC, such that g0+ do = 1—7f.

By Lemma 4.2, there is a chain mapping g from f(C) to C such that

; /
the sequence 0 — K, A Cp :g_’ f(Cp) — 0 is split exact, where j is the

inclusion homomorphism. Thus, for each p, C, = K,®g( f(Cp)) is the
direct sum of two of its subgroups. '

Now define a homomorphism p of degree 1 from 2'C, to XC, by
considering # = k+yeC, with keK, and yeg(f(Cp)) and setting o(x)
= 7(k)+ o(y), where 7 and p are as given above. It is easy to show that
00+ 09 = 1—f. Also, o(K,) = 7(K,) = K,,,, S0 p is stable with respect
to the kernel of f and the theorem is proved.

5. Remarks and questions. Corollary 2.4 shows that acyeclicity of
the kernel of f®1 follows from that of f in the case where C is free and f,
is an isomorphism. The proof made no use of any relationship be-
tween Ker(f®1l) and (Kerf)®@G. If Ker(f®1) = (Kerf)®(@G, then one
could use the stable homotopy operator given by Theorem 4.1 to
obtain an alternate proof for the corollary. Is it in fact true that the
equality just mentioned must hold given the hypothesis of Corollary
2.47 (P 651)

Results in [2], [3], and [4] are concerned with finding unessential
identifiers for the complex C(X) and for a somewhat larger complex
R(X). In [2] Fadell obtains a largest known unessential identifier for
R(X). A still larger one could be obtained using our result on the acyc-
licity of the kernels of the iterates of 5. Is there an even larger one
(P 652)? Or, we can ask related questions concerning C(X). First let

K’(X) denote the kernel of f. Let K(X)= |J K'(X). It is easy to see
i=1

that K(X) is an unessential identifier for C(X). Is there a larger one?
Is there a largest unessential identifier for C(X)? (P 653)
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