ON INDUCTIVE LIMITS OF TOPOLOGICAL ALGEBRAS

BY

JERZY KAKOL (POZNAŃ)

Let X be an algebra. A linear space topology σ on X is called multiplicative if the map $(x, y) \mapsto xy$ of $X \times X$ into X is (jointly) continuous. X equipped with such a topology is called a topological algebra. Clearly, σ is multiplicative iff for every neighbourhood U of zero there exists a neighbourhood V of zero such that $VV \subset U$. If the absolutely convex neighbourhoods U of zero such that $UU \subset U$ form a base of neighbourhoods of zero, then X is called locally multiplicatively-convex (locally m-convex) [8]. We say that a subset S of a topological algebra is m-bounded if for each neighbourhood U of zero there exists a neighbourhood V of zero such that $SV \cup VS \subset U$ or, equivalently, if the maps $x \mapsto xy_0$ and $y \mapsto x_0y$, where $x_0, y_0 \in S$, are equicontinuous at zero. If S is a bounded subset of X, then S is m-bounded (cf. the proof of Corollary 1). The converse holds when X has a unit.

In his fundamental work [8] on locally m-convex algebras Michael gave some sufficient conditions for the local m-convexity of the algebra X equipped with the linear inductive limit topology associated with an increasing sequence (X_n, σ_n) of locally m-convex subalgebras of X. This study was continued by Warner [13] who gave some other conditions to this effect with many applications.

The present paper deals with a similar problem in the context of the so-called generalized inductive limits of topological algebras.

The notion of generalized inductive limit of locally convex spaces was introduced first by Garling [5] who was inspired by some ideas contained in the earlier work of Wiweger [14]; a careful study of an important particular case was carried out by Roeleke [9]. Extensions of this notion to arbitrary topological linear spaces are due to Turpin (1971) and Adasch and Ernst (1974) (see [10], [11], and [1] for an account of their investigations). In the sequel we shall essentially follow Turpin [11].

Let X be a linear space over the field K of real or complex scalars and let $D = \{a \in K: |a| \leq 1\}$. By a balanced topological space we mean a balanced subset S (of X) equipped with a topology σ such that the map
(a, x) \mapsto ax of D \times S into S is continuous. By an *inductive system* (of balanced topological spaces) on \(X\) we shall understand a sequence

\[\Gamma = (S_n, \sigma_n : n \in \mathbb{N}) \]

of balanced topological subspaces of \(X\) such that

(I) \(X = \bigcup_{n=1}^{\infty} S_n;\)

(I) \(S_n + S_n \subseteq S_{n+1}\) and the map \((x, y) \mapsto x + y\) of \(S_n \times S_n\) into \(S_{n+1}\) is continuous at zero for all \(n \in \mathbb{N} = \{1, 2, \ldots\}.\)

It follows from (I) that \(S_n \subseteq S_{n+1}\) and the inclusion map is continuous, i.e., the topology induced by \(\sigma_{n+1}\) on \(S_n\) is weaker than \(\sigma_n\) (in symbols: \(\sigma_{n+1} \leq \sigma_n\)).

Let \(\Gamma = (S_n, \sigma_n : n \in \mathbb{N})\) be an inductive system on \(X\). We denote by \(\sigma_r\) the finest linear topology on \(X\) such that \(\sigma_r|S_n \leq \sigma_n\) for all \(n \in \mathbb{N}\).

\[\mathcal{B}_n = \mathcal{B}(\sigma_n)\]

be a base of balanced neighbourhoods of zero in \((S_n, \sigma_n)\).

Then the family of all sets

\[U = \bigcup_{n=1}^{\infty} U_n := \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} U_k, \]

where \(U_n \in \mathcal{B}_n\) (\(n = 1, 2, \ldots\)), is a neighbourhood base of zero for \(\sigma_r\).

Special cases. We shall call \(\Gamma\)

(i) *locally convex* if, for each \(n \in \mathbb{N}, S_n\) is absolutely convex and \(\sigma_n\) has a base of zero consisting of absolutely convex sets (in this case \(\sigma_r\) is obviously locally convex);

(ii) *strict* if \(\sigma_{n+1} \leq \sigma_n\) for all \(n \in \mathbb{N}\) (in this case \(\sigma_r \leq \sigma_n\); [11], p. 41);

(iii) *bounded* if each \(S_n\) is a bounded subset of \(S_{n+1}\) (i.e., \(S_n\) is absorbed by every neighbourhood of zero in \(S_{n+1}\));

(iv) *simple* if \(X\) is equipped with a linear topology \(\sigma\) and \(\sigma_n = \sigma|S_n\) for all \(n \in \mathbb{N}\);

(v) *bornivorous* if \(\Gamma\) is simple and every \(\sigma\)-bounded subset of \(X\) is contained in some \(S_m\);

(vi) *usual* if each \(S_n\) is a linear subspace of \(X\) and \((S_n, \sigma_n)\) is a topological linear space.

If \(\Gamma_1\) and \(\Gamma_2\) are two inductive systems on \(X\), then we call them *equivalent* and write \(\Gamma_1 \sim \Gamma_2\) if \(\sigma_{r_1} = \sigma_{r_2}\). It is easily seen that if \(\Gamma = (S_k, \sigma_k : k \in \mathbb{N})\) and \((k_n : n \in \mathbb{N}), (m_n : n \in \mathbb{N})\) are strictly increasing sequences in \(\mathbb{N}\) such that \(k_n \leq m_n\) (\(n \in \mathbb{N}\)), then \(\Gamma' = (S_{k_n}, \sigma_{m_n}|S_{k_n} : n \in \mathbb{N})\) is an inductive system on \(X\) and \(\Gamma \sim \Gamma'\).

Now we suppose \(X\) is a (linear) algebra and let \(\Gamma = (S_n, \sigma_n : n \in \mathbb{N})\) be an inductive system on \(X\). It is easily seen that if, for every \(n \in \mathbb{N},\)
$S_nS_n \subseteq S_{n+1}$ and the map $(x, y) \mapsto xy$ of $S_n \times S_n$ into S_{n+1} is separately continuous, then the multiplication on X is also separately continuous under σ_r. As we would like (X, σ_r) to be a topological algebra, it is natural to impose somewhat stronger conditions on Γ. We shall therefore say that the system Γ is algebraic if

(I$_3$) $S_nS_n \subseteq S_{n+1}$ and the map $(x, y) \mapsto xy$ from $S_n \times S_n$ into S_{n+1} is continuous at zero for all $n \in N$.

The system Γ is said to be m-bounded if

(m) for every $n \in N$ and every $U \in \mathcal{A}_{n+1}$ there exists $V \in \mathcal{A}_n$ such that $VS_n \cup S_nV \subseteq U$.

Note that if $S_nS_n \subseteq S_{n+1}$ for all $n \in N$, then (m) implies (I$_3$).

Our main result is Theorem 1 which shows that (m) suffices for the multiplicativity of σ_r; for a simple and bounded inductive system Γ it is also necessary (Corollary 1). In corollaries to Theorem 1 we indicate also a number of cases where the initial algebraic system Γ does not satisfy (m) but for which an equivalent m-bounded system Γ' can be found.

Theorem 1. If $\Gamma = (S_n, \sigma_n; n \in N)$ is an m-bounded inductive system on the algebra X, then (X, σ_r) is a topological algebra.

Proof. Let $p : N \times N \to N$ be an injective map such that $p(1, 1) = 2$ and $p(i, j) \geq i+j$ for all $i, j \in N$. Let

$$U = \sum_{n=1}^{\infty} U_n,$$

where $U_n \in \mathcal{A}_n$ for all $n \in N$. We shall find sets $V_n \in \mathcal{A}_n$ such that

(1) $V_nV_m \subseteq U_{p(n,m)}$ for all $n, m \in N$.

Hence it will follow that the σ_r-neighbourhood of zero

$$V = \sum_{n=1}^{\infty} V_n$$

satisfies $VV \subseteq U$.

For $n = m = 1$ choose $V_1 \in \mathcal{A}_1$ such that $S_1V_1 \cup V_1S_1 \subseteq U_2 = U_{p(1,1)}$; then (1) is satisfied for $n = m = 1$. Suppose we have already found sets $V_i \in \mathcal{A}_i$, $i = 1, 2, \ldots, n$, for some $n \geq 1$, so that (1) is satisfied for $1 \leq m \leq n$. If $1 \leq k \leq n+1$, then $p(n+1, k) \geq n+2$, and hence by (m) we may find $W^{(k)} \in \mathcal{A}_{n+1}$ such that

$$W^{(k)}S_{n+1} \subseteq U_{p(n+1,k)} \quad \text{and} \quad S_{n+1}W^{(k)} \subseteq U_{p(k,n+1)}.$$

Let $V_{n+1} \in \mathcal{A}_{n+1}$ be such that

$$V_{n+1} \subseteq W^{(1)} \cap W^{(2)} \cap \ldots \cap W^{(n+1)}.$$
Now, if $1 \leq m \leq n+1$, then

$$V_m V_{n+1} \subseteq S_{n+1} W^{(m)} \subseteq U_{p(m,n+1)}, \quad V_{n+1} V_m \subseteq W^{(m)} S_{n+1} \subseteq U_{p(n+1,m)}.$$

This completes the proof.

Corollary 1. If Γ is a bounded algebraic inductive system on the algebra X, then (X, σ_Γ) is a topological algebra.

Proof. If $U \in \mathcal{A}_{n+2}$, then by (I3) there exists $V \in \mathcal{A}_{n+1}$ such that $VV \subseteq U$. Since S_n is bounded in S_{n+1}, there exists $a \in (0, 1)$ such that $aS_n \subseteq V$. Choose $W \in \mathcal{A}_n$ so that $W \subseteq aV$. Then

$$S_n W \subseteq S_n (aV) = (aS_n) V \subseteq VV \subseteq U$$

and, similarly, $WS_n \subseteq U$. It follows that the inductive system

$$\Gamma_1 = (S_{2n-1}, \sigma_{2n-1} : n \in \mathbb{N})$$

is m-bounded. Evidently, $\Gamma \sim \Gamma_1$, and so we may apply Theorem 1, which completes the proof.

Corollary 2. Let Γ be a bounded simple inductive system on the algebra X. Then σ_Γ is multiplicative iff Γ is m-bounded.

Corollary 3. Let (X, σ) be a topological algebra with a fundamental sequence of bounded sets and let τ^* be another multiplicative topology on X such that $\tau^* \leq \sigma$. Then the finest linear topology γ on X agreeing with τ^* on all σ-bounded sets is multiplicative.

Proof. From the assumption on (X, σ) it follows that it has a fundamental sequence $(S_n : n \in \mathbb{N})$ of bounded balanced sets such that $(S_n + S_n) \cup (S_n S_n) \subseteq S_{n+1}$ for all $n \in \mathbb{N}$. Then $\gamma = \tau^*_\sigma$, where $\Gamma = (S_n, \tau^* : S_n : n \in \mathbb{N})$, and so it is enough to apply Corollary 1.

Example. Let $C(S)$ be the topological algebra of all bounded and continuous (real- or complex-valued) functions on a locally compact Hausdorff space S equipped with the sup-norm topology σ. From Corollary 3 it follows immediately that the strict topology β on $C(S)$ (cf. [3]), i.e., the finest locally convex topology on $C(S)$ agreeing with the compact-open topology on all σ-bounded sets, is multiplicative. For another proof see [3], p. 152.

Let (Y, ∂) be a topological linear space. Then $\mathcal{A}(\partial)$ will denote a (fixed) base of balanced ∂-neighbourhoods of zero and $\text{Bd}(\partial)$ the class of all ∂-bounded subsets of Y.

Theorem 2. Let $\Gamma = (S_n, \sigma_n : n \in \mathbb{N})$ be a usual inductive system of topological algebras on X such that

$$(2) \quad \mathcal{A}(\sigma_n) \cap \text{Bd}(\sigma_{n+1}) \neq \emptyset \quad \text{for each} \ n \in \mathbb{N}.$$

Then (X, σ_Γ) is a topological algebra.
Proof. Let $U_n \in \mathcal{B}(\sigma_n) \cap \text{Bd}(\sigma_{n+1})$ for each $n \in N$. First we shall construct an inductive system $\Gamma_1 = (A_n, \sigma_n | A_n ; n \in N)$ such that $\Gamma \sim \Gamma_1$, where $A_n \in \mathcal{B}(\sigma_n) \cap \text{Bd}(\sigma_{n+1})$ and also $(A_n + A_n) \cup (A_n A_n) \subset A_{n+1}$ for all $n \in N$.

Set $A_1 = U_1$. Suppose we have already defined A_1, A_2, \ldots, A_n in such a way that the desired conditions are satisfied. Since $(A_n + A_n) \cup (A_n A_n)$ is σ_{n+1}-bounded, it is contained in aU_{n+1} for some $a > 0$. Set $A_{n+1} = aU_{n+1}$. It is obvious that Γ_1 is an algebraic and bounded inductive system on X. We have also $\Gamma \sim \Gamma_1$, as is seen from the following simple fact (cf. [5]): If a, β are two linear topologies on a linear space and U is a β-neighbourhood of zero, then $a \leq \beta$ iff $a | U \leq \beta | U$. Finally, by Corollary 1, the topology σ_1 is multiplicative.

Remark. Condition (2) is clearly satisfied when each (S_n, σ_n) is locally bounded or when the inclusion map of S_n into S_{n+1} is compact (or pre-compact) for each $n \in N$.

Corollary 1. The (linear topological) direct sum of a sequence of locally bounded topological algebras is a topological algebra.

Remark. The (linear topological) direct sum of a sequence of locally m-convex algebras is a locally m-convex algebra (cf. Example 9 of [13]).

A topological linear space (X, σ) is called an Ultra-L-space (respectively, Ultra-Lb-space) if $\sigma = \sigma_r$ for every simple (respectively, bornivorous) inductive system Γ on X. Every ultrabarrelled space is an Ultra-L-space and every quasi-ultrabarrelled space is an Ultra-Lb-space. It is easily seen that every simple inductive system on an Ultra-L-space is bornivorous. For the basic properties of spaces of this type we refer to [1], [6], and [7].

Theorem 3. Let Γ be a usual inductive system on the algebra X consisting of topological algebras (S_n, σ_n) each of which is an Ultra-Lb-space with a fundamental sequence of bounded sets. Then (X, σ_r) is a topological algebra.

Proof. Let $(B_m^n : m \in N)$ be an increasing fundamental sequence of σ_n-bounded balanced sets in S_n. Let $A_1 = B_1^{(1)}$. Suppose for some $n \in N$ we have already chosen sets $B_i \in \text{Bd}(\sigma_i)$ so that $(A_i + A_i) \cup (A_i A_i) \subset A_{i+1}$ for $i = 1, 2, \ldots, n$. Since A_n is σ_{n+1}-bounded, there exists $p \in N$ such that $(A_n + A_n) \cup (A_n A_n) \subset B_p^{(n+1)}$. Then define $A_{n+1} = B_n^{(1)} + B_{n+1}^{(2)} + \ldots + B_{n+1}^{(n+1)} + B_p^{(n+1)}$.

Let $\Gamma_1 = (A_n, \sigma_n | A_n ; n \in N)$. It is obvious that $\sigma_r \leq \sigma_{r_1}$. Now fix $k \in N$. Then $B_n^{(k)} \subset A_n$ and $\sigma_{r_1} | B_n^{(k)} \leq \sigma_k | B_n^{(k)}$ for all $n \geq k$. Since (S_k, σ_k) is an Ultra-Lb-space, $\sigma_{r_1} | S_k \leq \sigma_k$ for all $k \in N$.

Hence $\sigma_{r_1} \leqslant \sigma_r$. Thus $\sigma_{r_1} = \sigma_r$ and it suffices to apply Corollary 1 to Theorem 1.

Now let X be an algebra with a locally convex topology σ. Such an algebra (X, σ) is called inverse continuous if it has a unit e, the multiplicative group $G(X)$ of invertible elements is open, and the map $x \mapsto x^{-1}$ is continuous on $G(X)$. It is known (and easy to see) that if the map $x \mapsto x^{-1}$ is continuous at e, then it is continuous on $G(X)$. By a theorem due to Turpin (cf. [12], p. 123), every commutative inverse continuous locally convex topological algebra is locally m-convex.

We shall need the following lemma proved in [2].

Lemma. Let X be an algebra with the unit e and let $\Gamma = (S_n, \sigma_n : n \in \mathbb{N})$ be a locally convex m-bounded inductive system on X such that for each $n \in \mathbb{N}$

(a) $S_n S_n \subseteq S_{n+1}$,

(b) S_n is contained in a subalgebra X_n of X,

(c) $X_1 \subseteq X_2 \subseteq \ldots, X = \bigcup_{n=1}^{\infty} X_n$,

(d) $\sigma_n = \tau_n|_{S_n}$, where τ_n is a locally convex topology on X_n.

Assume that

(*) for every $n \in \mathbb{N}$ there exist $V \in \mathcal{B}(\tau_n)$ and $m \in \mathbb{N}$ such that

$$e + V \cap S_n \subseteq G(X) \quad \text{and} \quad (e + V \cap S_n)^{-1} \subseteq S_m.$$

Then (X, σ_r) is inverse continuous.

Theorem 4. Let X be an algebra with the unit e and assume that

$\Gamma = (S_n, \sigma_n : n \in \mathbb{N})$ is the usual inductive system of inverse continuous topological algebras (S_n, σ_n) on X. Suppose also that

$$\mathcal{B}(\sigma_n) \cap \text{Bd}(\sigma_{n+1}) \neq \emptyset \quad \text{for all} \quad n \in \mathbb{N}.$$

Then (X, σ_r) is an inverse continuous topological algebra.

Proof. Without loss of generality we may assume that $e \in S_n$ for all $n \in \mathbb{N}$. Hence, by assumption, for each $n \in \mathbb{N}$ and each $U \in \mathcal{B}(\sigma_n)$ there exists $V \in \mathcal{B}(\sigma_n)$ such that

$$e + V \subseteq G(S_n) \subset G(X) \quad \text{and} \quad (e + V)^{-1} \subseteq e + U.$$

As in the proof of Theorem 2 we can construct an algebraic bounded inductive system $\Gamma_1 = (A_n, \sigma_n | A_n : n \in \mathbb{N})$ such that $\Gamma \sim \Gamma_1$, where

$$A_n \in \mathcal{B}(\sigma_n) \cap \text{Bd}(\sigma_{n+1}) \quad \text{for all} \quad n \in \mathbb{N}.$$

On the other hand, $\Gamma_2 = (A_{2n-1}, \sigma_{2n-1} | A_{2n-1} : n \in \mathbb{N})$ is an m-bounded inductive system and $\Gamma_2 \sim \Gamma_1$ (see the proof of Corollary 1). Hence it is enough to prove that Γ_1 satisfies condition (*) from the Lemma. Fix $n \in \mathbb{N}$. Since $A_n \in \mathcal{B}(\sigma_n)$ and (S_n, σ_n) is inverse continuous, there exists
\[V \in \mathcal{A}(\sigma_n) \text{ such that} \]
\[e + V \subset G(X) \quad \text{and} \quad (e + V)^{-1} \subset e + A_n. \]

Hence
\[e + V \cap A_n \subset G(X) \quad \text{and} \quad (e + V \cap A_n)^{-1} \subset A_m \]

for some \(m \in \mathcal{N}. \)

Applying the above-mentioned result of Turpin we now prove the following

Corollary 1. If \(\Gamma \) is the usual inductive system of commutative Banach algebras on the algebra \(X \) with a unit, then \((X, \sigma_{\Gamma}) \) is a locally \(m \)-convex algebra.

Remark. In general, the usual inductive limit of locally \(m \)-convex algebras need not be locally \(m \)-convex (cf. Example 6 of [13]).

I would like to thank Professor L. Drewnowski for his help in preparation of this paper.

REFERENCES

INSTITUTE OF MATHEMATICS
A. MICKIEWICZ UNIVERSITY
POZNAŃ

Reçu par la Rédaction le 12.12.1978; en version modifiée le 23.7.1980