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Relations between extrema of parametrical integrals
and ordinary integrals

by M. A. WOLANOWSKI (St. Lucia, Australia)

Abstract. In the paper we introduce the concept of a run and an equivalence
relation in the set of runs; the elements of the quotient space are called curves. Then
some sets of runs and some sets of curves are provided with topologies and a funec-
tional is defined on each topological spaces.

Let us suppose that two of the funectionals are investigated. Assume that one
of them has a local extremum for a certain element of its domain and consider the
corresponding element of the domain of the second functional; the function establish-
ing the correspondence of the elements is either the identity function or a canonical
transformation. The main purpose of the paper is whether that element is a local
extremum of the second functional. The solution of this problem is given in Theorems 2
and 6.

The examples adduced in the paper seem to be interesting. They show that
a curve which is a strong local extremum of a functional in the class of normally situ-

ated curves may not be a strong local extremum of this functional in the class of all
ourves,

INTRODUCTION

K. Weierstrass indicated for the first time the analytical relations
between “ordinary” and “parametric” problems of the calculus of vari-
ations (see [6], p. 93, 239). These relations were later inwestigated by
0. Bolza (see [2], p. 198-201) and J. Hadamard (see [4], p. 78).

The mentioned authors dropped the topological side of those relations.

Weierstrass defines the idea of “nearness” of curves very imprecisely
(see [6], p. 77, 177). Moreover, he thinks that the parametric problem
is more general and in this connection one canrot be interested in the
ordinary problem (see [6], p. 84). Weierstrass does not pay any atten-
tion to the existence of the wide class of physical problems which lead
to the extremal-problem for ordinary integrals by means of distinguishing
of the time-axis. It is obvious that one can apply to these problems para-
metrical integrals corresponding to the initial ones; however, it should
be noted that the functionals obtained in this way have different domains
than the functionals determined by the initial integrals.

An interesting attempt of exhibition of the topological aspect of
the calculus of variations is taken up by C. Carathéodory (see [3], p. 227).
Unfortunately he does not go in for the topological relations between
ordinary and parametric problems.
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These problems are treated interchangeably in the local study of
the authors of the later works. Such treatment seems to be unjustified
since the problems must be examined in topological spaces with different
elements. Moreover, it cannot be supposed a priori that the topologies
of these spaces correspond to each other. This assumption is not generally
true even for the “natural” topologies of each of the spaces. In order
to check this it is sufficient to note that the solution curve of the para-
metric problem may not be normally situated in relation to Oz-axis.
The considerations of Section 2 also show that such an assumption cannot
be made.

In this paper we introduce the concept of a run as a function whose
values belong to a normed linear spade; it is worth noting that this space
is not necessarily complete.

We also introduce an equivalence relation in the set of runs. The
elements of the quotient space are called curves.

Then some sets of runs and some sets of curves are provided with
topologies and a functional is defined on each of these topological spaces.
Suppose that two of the functionals are investigated. Assume that one
of them reaches a local extremum for a certain element of its domain
and consider the corresponding element of the domain of the second
functional. The main purpose of this paper is whether that element is
a local extremum of the second functional. The solution of this problem
is given in Theorems 2 and 6. '

The functionals considered in the paper are of more general form
than those expressible as integrals. However, the title of the paper seems
to be appropriate since it indicates the connections between the results
of the paper and the classical theory. \

The mark m denotes the end of the proof. If it appears immedi-
ately after the formulation of a theorem then it means that the proof
of this theorem is obvious.

Finally I would like to express my thanks to Professor K. Tatarkie-
wicz for drawing my attention to the problem of the paper (see also [5],
p. 182).

1. TOPOLOGIES ON THE SET OF RUNS AND ON THE SET OF CURVES

1.1. Runs and curves. Let W and Y be real normed linear spaces, let
R be the reals, W = Rx ¥, and

(2, Il = (lel®+ IlyI*)*  for every (z,y)e W.
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Denote by E the set of all functions w: Dw—~W such that Dw is
-a closed interval of R, w is continuously differentiable and [jw(?)|| > 0
for te Dw. The elements of E are said to be runs.

Denote by F the set of all real continuously differentiable functions
defined and having positive first derivatives on closed intervals of R.

Introduce in E the equivalence relation ~, where w ~wv if and
only if there exists heF such that w =vo h, h(a) = ¢, h(b) = d, where
{a, b> = Dw, (¢, d> = Dv.

The quotient space will be denoted by . The elements of X are
called curves. It will be convenient at times to regard a curve as a subset
of the set of runs, however, we shall make no distinction in notation.

1.2. Metrics on the sets of fixed-domain rums. Let {r,s) be a fixed

interval. Denote by E(r,s)> the set of all runs having this interval as
their domain.

If C is a curve, define C{r, 8) by CnE{r, s).
For ke{0,1} define the metric ¢{** on the set E(r,s) by
(1) L0, w) = max(max o' (t) —w (1)),
Je{0, k) te(r,8)
where ) and w'”) are the derivatives of j-th order of v and w respectively.
The topology generated by (" will be denoted by the same symbol.

1.3. Topologies on the set of curves. If e<cE<0,d) and |e(t)]| =1
for every te De, then e is said to be a natural run.

For each w in E there is d > 0 and a unique natural run e<E {0, d)
with w ~ e. If C denotes the equivalence class of w we refer to e as the
natural representation of C.

For ke{0, 1} define the function 6,: A XX —R by

(2) 6&(Cy, Cy) = max{ inf ngo,dl)(e” w,) inf dco'dz)(wn e},
w2t02(0,dl> wl(cl(o,dz)

where e; is the natural representation of C; (i =1, 2).
For any C,e 4 define the following family of sets

(3) B, (Co) = {{Ce X5 8,(Cy, C) < a}, 0 <a<1}].
THEOREM 1. The class of families
(4) {B,(C); Ce X}

forms the system of neighbourhoods for a topological space.
Proof. If C,, Cye X', w,eC,{r, s), then

(6) 6(Cyy Cy) = inf (0?(w;, w,) =inf inf ([PV(v,,v,).
woeColr,8) : 2,¢ vieCy(p, >
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It follows from (5) that 4, is a pseudometric on X"

The analogue of formula (5) is not true for §,. In order to prove
the theorem in this case we show .that the conditions Cye ", % eB,(C,),
and C,e % imply the existence of ¥ ¢B,(C,) such that ¥ e #. .

Indeed, suppose that the above conditions are fulfilled. Let #
= {C; 6,(Cy, C) < a} and let b > 0 be chosen such that 6,(C,, C,;) < a—b.

b
Then the set ¥ = {C; §,(C,, C) <r}, where r = T_I_*a—mi;, has the

desired property.

To prove the last statement, choose C,e¢¥ and denote by e; the
natural representation of C; (¢ =0,1,2) and by (0,d,) the domain
of e;. Choose vyeC, and w,e C, such that {{*?)(e,, 1)) < a —b and {»%
(20,, ;) <. Let heF be such that w, = eoh. Put w, = v,0h. Since
h(t)—1 < [[by(t) — €5()| <7, hence

0% a0y, 101) = max ({49 (v, €x) max A() (R () — L]) < (1-+7)(a—b).
«0,dy)

Therefore
(6) nf cr%(a0, € <L a0y, €) < L0 0y, ) + L4 (10, €4) <.
welol,dy

Similarly, we show that
(7) inf "% (e,, w) < a.
' weCy(0,d))
The theorem now follows from (6) and (7). =
The topology of the above theorem will be denoted by 4,.

1.4. Remarks. It can be proved that C(r,s> is a closed subset
of the space (E (r, 8>, {{"*)). Thus the condition 4,(C;, C;) = 0 implies
C, = C,. Therefore (X, 8,) is a T,-space.

The topologies §, remain unchanged when the norm of W is re-
placed by equivalent one.

-If W = R", then the assumptions of Section 1.1 guarantee that
the functions £{**), §; are invariant under rotations and translations of
coordinate system in the space W.

2., EXTREMA OF FUNCTIONALS DEFINED ON THE SET GF RUNS
AND ON THE SET OF CURVES

2.1. Definitions. We shall consider a functional I: E—~R having
constant values on curves regarded as subsets of E and the functional
J: ' —R generated by I

If p,qge W denote by E(p, q) (X (p, q)) the set of all runs (curves)
beginninig at p and ending at g¢. '



Eztrema of parametrical inlegrals and ordinary inteqrals 203

The run of the shape (id, y) is said to be super-normal run. A curve C
with (id, y)eC for some ¥y is called a nmormal curve. The set of all super-
normal runs is denoted by E(x). The set of all normal curves is denoted
by X (z). We adopt the following notation: E(p, q; r,s) = E(p, ¢)n
NE{r, s>; (E(p, 9); o) = E(p, 9 nE(2); X (p, q;3) = A (P, 9)NKH ().

For each Ce X (x) there is 2 unique super-normal run in the equiv-
alence class C which we call the super-normal representation of C.

2,2, The difference between strong extrema of I and J. The following
two examples show that the investigation of strong extrema of the func-
tionals I/E{r, s> and I/E(z) cannot be treated interchangeably.

ExAMPLE 1. Take W = R® and define I: E—~R,

I(z,y) = [ |, g)ldt,
T
‘where D(z,y) = {r, 8.
Put p =(0,0), ¢ =(1,0). The run w, = (id, 0) is an absolute
minimum of I/E(p, q; ).
Suppose that 0 < a <1 and define the functions x and y by

a . 10x © bxw . a\,
—ESID T — a 1] cos -Z_—T't if te O,T(')‘ ’
t t £t —
(1) = | f(?) L1575/
a
t ].ftf g,l ’
10 5
Esiu T — sin i—l-t if te O,i 5
a a 10
y(t) =
X . a
0 lf te(TO—; 1>’

where f is such that w = (z, y)<E(p, ¢;0,1) and ) (w, w,) < a.
Now '
a/10

1
I(w) = [ xlw|dt+ [x|lldt

0 af10

and the first of these integrals is negative while the second is equal to
I(w,).
Thus w, is not a strong local minimum of I/E(p, ¢; 0, 1).
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ExAMpLE 2. Take r < 8 and denote for any natural %:

+ 8§—7 b $—171
a, =7 _ = —;

Z, ={(®,y); r+b, <z <a,y>0}
(2, 9); (2 —a)® +(y—b)")"2 = by, y < be);

zZ = R"’\(Q z,).

Put W = R* and define ’I: E->R

n
I(x,y) = [ (go(x, y))dt,
m
where D(x,y) = {(m,n)> and g(z,y) is the distance of (z,y)eR* o Z.

The run w, = (id, 0) is an absolute minimum of I/E(z).

Define the run w, such that w,(t) = (¢, 0) if te{r, $)\<ay, a, +2nb,>
and 20,(t) traces out the circle (x— a,)*+(y—b,)* = b if ¢ ranges over
(ay, ay+2nb,). Then for k> 2 the domain of w, is {r, s> and for any
a > 0, {{* (w,, w,) < a provided that k is sufficiently large. Since I(w,) < 0
‘hence w, is not a strong local minimum of I/E{r, s).

It may be worth noting that the set of values of any function w,
is contained in the set {(#,y)| » < < s}. The function w constructed
in Example 1 does not have the analogous property.

The above examples and formula (5) yield the following theorem.

THEOREM 2 (about strong extrema). Strong local extrema of the func-
tionals J/ A (p, q) and 1/E(p, q;r,8) correspond and so also do those of
the functionals J/H (p, q;2) and 1/E(p, q;x). The strong local extrema
of the functionals J/A (p, q) and J/H (p, q;x) as well as 1/E(p, q;71,s)
and 1/E(p, q; ) do not necessarily correspond.

Clearly, the term correspondence in the above theorem is interpreted
to mean that if w is a minimum of one functional then Tw is a minimum
of the second funectional, where T is th¢ canonical transformation, i.e., T
is either the quotient mapping or identity mapping. A minimum of the
second functional might not be in the image under T of any element in
the domain of the first functional.

2.3. Relationships between topologies on the set of runs and on the
set of curves. In this section Z, and Z, are topological spaces which as
sets are subsets of E or . Taking an arbitrary element of Z, and an
open neighbourhood U of it we establish the existence of an open neigh-
bourhood 0 of the corresponding element of Z, and a set § contained
in U such that the image of § under the canonical transformation covers 0.
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It should be noted that this property of the canonical transformation
is not continuity.

THEOREM 3. For any curve Cye X (z) and a > 0 there exists b > 0
such that the conditions*{%% (e,, w) < b, ®(0) = r, x(d,) = s imply that
Ce A (x) and "% (w,, w*) < a, where e, is the natural representation
of Cy, w = (x,y)eC and w, and w" are the super-normal representalions
of C, and C respectively.

Proof. Set e, = (g,, hy), w; = (id, y;)w* = (id, y*), m = min g,(?)
. ¢
and M = max ||hy(t)]|+m/2. Let ¢ > 0 be such that [y, (p)—¥, ()] < a/4
¢
if |p—q| < ¢ and let d > 0 be such that

(8) (), w*) <a if (D (e,, w) <d.
am?
If b = mln( ) y Cy _T—I-__f”)’ d), then
x(t)>gy(t)—b>=m—m/25 0,
. " N EO

9" (®(t)) — 95 (go(D))]| = 20 90
< % Wee {®(t) g (2) —y @) + g (D] 12 () — go (2)}
< ( L I (t)n)<i(1+2—ﬂ—f-) <2,
Sem\ " wm Y 2’

9)  |lg* (@) —us (= )|
< [|9* (@ (1) — 45 (gs ()| + ]| 95 (o (D) — 47 (@ (D))]| < a.
The theorem is a consequence of (8) and (9). m

THEOREM 4. For any natural run e,eE and a > 0 there exisis b> 0
such that the condition "% (w, e,)) <b implies that K*(f, €) < a,

d -
where f(t) = e(? t) for te{0, dy>; e is the natural representation of [w] ,
0
De = (0, d).

. a ¢c a l . .y
Proof. Put b = mm( — 5), where c¢ is a positive

_ 1+2d, 44, 6’
number such that ||e,(r) —é,(s)]| < a/3 if |r —s| < c. Suppose that f = woh,
where heF.
. Since
h{t)
(10) | [ leblids | < U I1f1ds —t] +U (ool —1 ds]<
)

] bt

< 2bt < 2bdy,
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we have
(11)  If () — &(2)]l < lleg () —w (¥)l| + o (2) — f(1)]] < b(1+2d,) < a.
Since |1 —[w||| < b < } hence it follows form (10) that
(1) —1] < 4bdy<c, s0 ||&(R(t)—ét)| < a/3.
Let w = eog:geF. Then |

. . d d .
| ft) —w(h(®)| = IE -g(h(t))'< "d: —1] +|g(h(#)—1| < 2b < a/3.
Therefore

1£(5) — &)1 < || f(&) — (R )] + [[e0 (h() — & (R (0)]| +
+|| € (R (1) — &(t)]| < a.
The theorem follows from (11) and (12). m

LEMMA. For any curve Cye X and a > O there exists b > 0 such that
Jor Ce X" the condition

L% (e, f) < b
implies that
ED(fo, €) < a,

where e, and e are natural representations of C, and C respectively,
t = —t t =e —t . B
fo =e(5t). 10 = e(5)

THEOREM 5. For any run wgeE and a > 0 there ewists b > 0 such
that 8,([w,]", [w]") < a if ¢ (w0, w) <b.

Proof. If w, is a natural run, then the theorem follows from The-
orem 4 and the lemma. The general case now follows. m

2.4. The relationship between weak extrema of I and J.

THEOREM 6. (About weak extrema). The weak local extrema of the
functionals 3| (p, q), J|# (p, ¢; 2), J/E(p, a; ®) and I/E(p, g;7,s) corre-
spond.

Proof. The theorem follows from Theorems 3 and 5. w
The interpretation of the term correspondence in the above theorem
is similar to that in Theorem 2.

2.5. Final remarks. Define the function v A XA >R by

¥(Coy C) = inf I:’do)(eo’ w),
w‘c<°:d0>

where e, is the natural representation of C, and ke{0, 1}.



Egtrema of paramelrical integrals and ordinary integrals 207

Replace &, by y, in formula (3) and form the topology y,.
From Theorem 5 it follows that y, = 4.
Suppose that 4 < E(r,s) and # < X is the set of curves generated

by the elements of A. Then formula (5) and Theorem 5 yield the following
two theorems.

THEOREM 7. If A is a compact subset of the space (E{r,s), "),
then B i3 a compact subset of the space (X, d,), where ke{0, 1}.

THEOREM 8. If weE(r,s), then J is lower (upper) semi-continuous
at the point [w)]  with respect to the topology 6, if and only if 1/E(r, s)
is lower (upper) semi-continuous at the point w with respect to the metric
igcr,a).

Theorems 7 and 8 may be used to establish the existence of absolute
extrema of the functional J/2 when Z is a compact subset of .
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