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Introduction

The partition property
(1) "‘*(,770’7717---)"

has been extensively studied by Erdos and his collaborators (see [1] and
[2] for further references). The present paper deals with a generalization
of this property, a generalization obtained by considering not partitfons
of the n-element subsets of x, as is the case with property (1), but
rather partitions of certain finite sequences of n-element subsets. This
is in fact a special case of the polarized partition relation defined in [2,
p. 100].

The appropriate definitions appear in § 1, along with notation and
some simple observations. A brief discussion of when certain partition
properties may fail appears in §2. In § 3, the Ramification Lemma of
[2] is recalled, and certain applications of it made. This is in fact the
major tool used in obtaining most of the results in this paper. The main
theorem is presented in § 4, along with several corollaries to it. Finally,
in § 5, a particular polarized relation for cardinals cofinal with R,, which
is proved in [2] for the case of a partition into two parts, will be shown
to hold for partitions into any finite number of parts.

. § 1. Notation and definitions

Standard notation from set theory will be used throughout. In parti-
cular, sequences are written (z,; aed), except that for finite n an or-
dered n-tuple is usually written {(,,...,,>. The restriction of 4 to B
is denoted A B. The set of all functions with domain x and range con-
tained in y is denoted “y. The cartesian product of a family {z;; ieI} is
written [[{2;; ieI}. The powerset of x is Zz, and #—y denotes set-dif-
ference.

Ordinals are defined in some standard manner (e.g. [5]) so that if
a is an ordinal, a = {; f i8¢ an ordinal and § < a}. The initial ordinals,
i.e. ordinals having power larger than that of any of their members,
are identified with the cardinals. The sequence of infinite cardinals is
No;, 81y Nz, ... Ordinal sum and ordinal product are denoted by + and
- respectively. Cardinal sum is +, and cardinal product is indicated by
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X ¢. Unless the contrary is stated, »* means cardinal exponentiation and >,
means the infinite sum of cardinal numbers. If § is a limit ordinal (in
particular, a cardinal) the cofinality of 8, Cf(f), is defined to be the smal-
lest cardinal x such that. g is the union of x smaller ordinals. For » a car-
dinal, »* is the cardinal next after x», and x»~ is the cardinal immediately
before x if there is such a cardinal, whereas otherwise x~ = ». A cardinal »
is called regular if Cf(x) = x», and singular if not regular. A cardinal x
is termed inaccessible if x is regular and A < » = 2% < »x. A

The cardinality of a set z is denoted |#|. The set {yeZx; |yl = x}
of exactly x-element subsets of « (for » a cardinal) is denoted [#]*. Similarly,
[#]<%, [#]=* and [#]”* stand for the sets of subsets of # which have car-
dinality less than x, at most » and at least x». In particular, [#]<“ is the
set of finite subsets of .

A partition 4 = {4,; I <} of a set 4 into » parts is a decomposition
A = |J{4;; I < v}, where no 4; is empty. Given such a partition, if
a,bed, then a = b(mod 4) indicates that there is some class 4; which
has both a and b as members. The partition is called disjoint if the 4,
are pairwise disjoint.

Finally, a word on the conventions concerning variables. Unless
the contrary is stated or implied, ¢; », A denote infinite cardinals. Other
small Greek letters denote ordinals, as also frequently do ¢, j, k, . Natural
numbers, usually non-zero, are represented by m, ». In addition, p, g, 7, s
also represent arbitrary natural numbers. For partitions of some set,
A4,I'y 4 will be used. Capital Roman letters and the remaining small
Roman letters denote arbitrary sets.

The class of all functions with domain ¢ and taking ordinal values
will be denoted by SEQ, . If X eSEQ, for a non-limit ordinal o, say ¢ = 741,
then X[ t will be abbreviated to X. Thus X = X U {(z, X (7))}

The Generalized Continuum Hypothesis will be assumed wherever
it leads to a simplication in the results. Theorems reached with its aid
will be marked (*).

The partition property to be studied can now be defined.

. 1.1. DEFINITION. % — ™(n; 1 < »)"if for all partitions 4 = {A;; 1 < »}
of ™([#]*) into v parts, there are | <v and a sequence H,,..., H, (where
each H, < x and has order type w;), which is homogeneous for A, in the
sense that [H,]" X ... X [H,]* < 4,.

Property (1) above is thus seen to be that case of Definition 1.1
for which m = 1. The special case of 1.1 in which 7, =# for all I <»
will be written x — ™(n)r. The property x» —™(n;l<v, 0k < p)”
hag its obvious meaning.

Property 1.1 itself is a special case of the general polarized parti-
tion property defined in [2]. This may be expressed as follows.
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1.2. DEFINITION.

Xm Umi] 1<v.

if for all partitions 4 = {4,; 1 <} of [»,]"X ... X [%,]" into » parts,

there are ! < v and a sequence H,,..., H, (where for each i, H; < %,
and has order type #;) such that [H,]" x.... X [H,]' < 4,.

Thus property 1.1 is that case of 1.2 in which », =... =2, =,
%, = ... =%, =x and n; = ... =9, =n for each 1 <.

A symbol similar to that used in either of 1.1 or 1.2, but with the —
replaced by +», indicates that the appropriate property fails to hold.

Before a more detailed discussion of the various partition relations,
a few simple remarks are in order (see also [3]).

The use of the ordinal v to index the classes of the partition 4 is
not essential. Any set with the same power as » will serve equally well,
and the truth or falsity of the relation will remain unchanged. In partic-
ular, the ordinals 7; for I < » in the relation » — ™(n;;1 < »)" may be
permuted without affecting the relation.

If » has a partition property and 4 is any cardinal at least as big
as x, then A has that same property.

If » enjoys a partition property with » classes and x is any ordinal
smaller than v, then the corresponding property with u classes also holds
for x, since a partition with a small number of classes can be extended
to a partition with a larger number of classes by adding superfluous
parts (of, for example, one element).

If » has a partition property in which the homogeneous sets have
order type #;, then for any ordinals 6, < », the corresponding property
with %, replaced by 6, also holds for .

If » has a partition property involving sequences of length m, and
if m'<m, then » has the corresponding property for sequences of
length m'. (Given any partition involving sequences of length m/,
choose a partition of m-length sequences for which membership of any
partition class depends on only the first m’ places of the sequences
involved.)

In the case that all the n; of 1.1 are cardinal numbers (and similarly
for the #; of 1.2), rather than requiring that the homogeneous sets have
order type exactly 7, it suffices to specify that their power be #;. Thus,
when the 7, are cardinals, » — (7;; ! < »)" if and only if for all partitions
™[%]") = U {4;; I < v} there are I < » and a sequence H,, ..., H, from
[#]" such that [H,}"x ... Xx[H,]* = 4,. Frequent use of t;hls equiva-
lence will be made, without further commient.
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Definitions 1.1 and 1.2 are expressed as properties of cardinal
numbers. They could equally well be expressed as properties of arbitrary
sets of the appropriate powers. For example, » — ()], is equivalent
to the following:

For any sequence of sets Sy, ..., §,,, where each §; has power x and
is well ordered by a relation <, let there be given any partition A
= {d;; 1< v} of [8;]"% ... X [8,]* Then there is a sequence H,,..., H,,,
where each H; < 8; and has order type 5 in <;, such that [H,]*x ...

. X [H,]I" < 4,. -

There is an obvious extension of relation 1.1 to the case that
n is an infinite cardinal. A well-known example of Sierpinski [6] shows
that any such relation with infinite » is false. Similarly, there is
an obvious extension of 1.1 to the case that m is an infinite
ordinal. Again, any such relation is known to be false (see, for
example, [7]).

I conclude this section by mentioning a simple method of generating
relations of the kind in Definition 1.1 from known relations of type (1)
above. .

1.3. THEOREM. Let v be a cardinal and for I < v let n, be ordinals. Put
n = sup{n; ! < »}. Suppose x is a cardinal such that » — (n-m),"". Then
x =" <)

Proof. Let 4 = {4,;1 <»} be any partition of ™([%x]"). Choose
any partition I' = {I}; I <»} of [x]™ which satisfies: if a; < a; < ...
< @y < %, then for all I < v,

{a17 Agy ooy amn}e-rl <> {{agy oevy @p}yenny {amn—n+1’ ooy O b edy.

Since x» — (n-m),"", there is H < » having order type #-m such that
[H]™ < I for some ! < ». Divide H into m pieces, H,,..., H,, each
having order type 7, such that sup(H;) < min(H;,,) for each i. However,
then [H,]"x ... x[H,]" < 4,, and since # < n it follows that
% — "y L< )™

In view of Theorem B of Ramsey [4] and Theorem 39 (iii) of [1],
we obtain the following corollaries:

1.4. COROLLARY. For all I, m,n,reR, there i8 k = k(l, m, n,7)eR,
such that k& — ™(l)r.

1.5. COROLLARY (*). If a>=0 and 7 <R,y for 1< R, then
su+17m —> m(’?l; l< na);n'

In particular, R, ymn —> (Kol

The result of Corollary 1.5 is not the best possible. A stronger result
will appear in §4.
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§ 2. Negative relations

In this section, some cases where a partition property fails to hold
will be discussed.

Cardinals with a property of the form x» — ™(x);, where m = 1 have
been considered by various authors. There certainly appears to be no
reason to exclude their existence. However, when m > 1, this is not the
case. The following theorem shows that even the weakest such property
fails to hold.

2.1. THEOREM. For all x, x + *(x);.

Proof. Take any cardinal x, and define a partition 4 = {4,, 4,}
of [x]'x [#]* as follows:

Ha}, {Bedy <+ a<B; ({a},{fHed; <p<a.

Let H,, H, be any pair homogeneous for 4. Suppose, say, that [H,]* X
x [H,]* € 4,. If § = min(H,) and aeH,, then a < . But fex, and so
|Hy| < ». Similarly, if [H,]*x [H,]' < 4,, then [H,| < x. Thus no pair
homogeneous for 4 can have |H,| = |H,| = ». This proves the theorem.

In fact, even more may fail:

2.2. THEOREM (*). Provided » > R,, then x¥ + (x*, x)L.

This follows from Theorem 43 of [2]. The proof will not be given
here.

2.3. THEOREM. Suppose A< x = 2* < x. Then

Y [* 2 22
2% 2 xf -
Proof. For distinct elements # and y in %2, define é(x,y) to be

the least a < » for which x(a) # y(a). Define a disjoint partition [*2]%X
)( ["2]2 - AO v Al by‘

{®yy @1}y {Yoy Y1}) € Ay < (20, T1) < 6(Yoy Y1) -

Take any ¥,, ¥,€2 with y, % y,. Then §(y,, ¥,) < ». However, if z,, x, 2
are such that d(x,, #,) < d(y,, ¥,), then 2, and x, differ no later than at
0(Yo, ¥,)- Hence if H < *2 has the property

{@oy .} [H]? = 6(xg, #,) < 6(Yoy Y1),

then |H|< 2"@ev)+1 « 5 Thus there are no H,e[*2]*, H,e[*2]® such
that [Hy,]*x H, € 4,. Similarly, there are no H,e[*2]% H,e["2]* such
that H,x [H,]? < 4,. This proves Theorem 2.3.

2.4. COROLLARY (*). If x~ = x, then » + *(x):.
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A similar construction may be used to show:
2.5. THEOREM. Suppose A< x = 2* < x. Then

()=

The following theorem gives a method of stepping up a negative
result for a cardinal » to a negative result for 2*. The proof is an extension
of the method of proof of Lemma 5A of [2], and will not be given here.

2.6. THEOREM. Let n > 3. Let n, for | < v be cardinals such that 74, 9,
> R, and 7, i8 regular. If x is a cardinal such that x + ™(q; 1 < )", then
2%+ My 1< 9)"

Theorem 2.1 yields that x» 4+ %(x)}, and so certainly x +» *(»)2. Thus
by Theorem 2.6, x»* +» *(x); for regular ». If » is inaccessible, applying
Theorem 2.6 to Corollary 2.4 (*) leads to the stronger result that »++ +» ()3,
Likewise, Theorem 2.2 gives that x* -+ %(x", x)! for x >&,, so that
%t + Yxt, %)% Then 2.6 yields that »™* + 4{(xt, x)3.

§ 3. The Ramification Lemma

Many of the positive results obtained in [2] depend on the following
lemma, the Ramification Lemma. Likewise, it is the main lemma on which
rest most of the proofs of the relations established in §§ 4 and 5.

3.1. LEMMA. Let ¢ >0 be a limit ordinal. For all sequences X ¢eSEQ,
and Y eSEQ,,,, where o < p, let there be given sets S(Y), F(X) and an
ordinal n(X). Let a set 8§ = §(D) be given. Put.

N ={XSEQ,;0< ¢ and Vi< o(X(r) <n(X I 7))},
and for X eSEQ, define
8(X)=8SnN{8Xlr+1);7<a}.
Suppose that whenever 6 < o and XeN N SEQ, then
(a) §(X)=F(X)uUU{8(Y); YeSEQ,,, and ¥ = X
and Y (o) < n(X)},

(b)y F(X) nU{S(Y); YeSEQ,,, and Y = X and Y (o) < n(X)} = 0.

Under these conditions,

(i) r<o<pand XeN NnSEQ, = F(X)nF(X!7)=0;
(i) 8 = UJ{FX);Ho < g(XeNNSEQ,)}U U{S' (X); X e N NSEQ,};
(iii) Suppose R, < = < |8|, |o] < Ci(x) and |F(X)| < x whenever X eN .



§ 3. The Ramification Lemma 11

For o < p let there be given cardinals 1, such that A7 < Cf(x), and
suppose that

r<o<p and XeNnNSEQ, = [n(Xl 1) <A4,.

Then there is X e N n SEQ, for which 8'(X) is non-empty.

(iv) Suppose x is strongly inaccessible. Let |8| = x, |o| < % and assume
that for ¢ < o,

XeNNnSEQ, = |F(X)| <% and |n(X)| < x.
Then there is X e N n SEQ, for which 8 (X) is non-empty.

The proof is in [2], pp. 103-105. A diagram of a ramification system
may be found on p. 105 of [2].

The system £ of sets N, F(X) and S(X) is called a ramification
system on S of length p. In all references to the Ramification Lemma,
the ,symbols o, N, S(X),... are to have the significance ascribed to
them in that lemma. In applications, the ramification system # will be
constructed inductively. To do this, it is sufficient to assume for any
o < p that §'(X) has already been defined for some fixed X ¢SEQ,, and
to define n(X), F(X) and each S(Y) for Y eSEQ,,, such that ¥ = X
and Y (o) < n(X).

As a first application of this principle, the following theorem will
be established.

3.2. THEOREM. Let A, > R, and A, be cardinals such that 2, — (5, 2; 1 < »)
and Ay — ¥(0,; k < u)'. Suppose x is a regular cardinal such that A7, 4, < x, '
and (< A, = (V| XgA ) < ». Then = — 46,5k < u, n;l <)

Proof. Consider first the case where the », are all cardinals. Sup-
pose x X x» is partitioned,

xxx = U{d; b <p} U1 <9}

It may be assumed for all H,, H, < » with |H(|, |H,| > A, that H,x
X H, & U {4,; k < u}, since otherwise the theorem follows from the
property 1, — %(0,; k < g). Thus it suffices to find ! < v and H,, H, c x
such that H,, H, have power n, and H,x H, < I.

Define a ramification system % on x of length o = 4, as follows.
Take ¢ < ¢ and X eSEQ,. Suppose 8 (X) has already been defined, and
consider two cases.

Case 1. o even.

If for no ze8' (X) is it the case that (z, x)>el|J {4y; k < u}, choose
ze8 (X) and put P(X) = {x}. Otherwise, choose F(X) < 8 (X) maximal
with the property F(X)Xx F(X) < {J{4;; k < p}. In either case, |F(X)
< Ay. Choose @(X) < §'(X) maximal such that F(X) < @(X) and Q(X) x
X F(X) € U {4,; k < u}, except that if there is no z¢S'(X) with (z, z)
e{J{4d,; k < p}, then the requirement F(X) < @(X) is to be ignored.
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Then if ye8' (X)—Q(X), there is weF(X) such that {y, z)>¢{J {4;;
k < u}, by the maximality of @(X). Thus there is a decomposition

8'(X)—(Q(X) v F(X)) = U{S(Y); ¥ =X and Y (o) <n'(X)},
where given YeSEQ,,, such that ¥ = X, for some #(Y)eF(X) and
1Y) < »,
YyeS(Y) <y, #(Y)) elyy).
Further, [n'(X)| < || Xo|F(X)| < |v| oAy . Finally, if
N{S(Y); ¥ = X and ¥(o) < n'(X)}— F(X) = §'(X)— F(X),

put n(X) = n'(X); otherwise n(X) = #'(X)41 and 8(X U {{o, n'(X))})
= @ (X)— F(X).

Case 2. o odd, say ¢ = {+41.

I X(¢) <n'(X), put F(X) =0, n(X) =1 and S(X U {<a, 0>})
= 8'(X). I X(¢) = »'(X), still put F(X) =©. However, in this case
8 (X)< @(X)— F(X). Hence by the maximality of F(X), for any y 8’ (X)
either (y, y>¢ U {4,; k < u} or there is z¢F(X) such that {(z, D¢ {d,;
k < u}. Thus there is a decomposition

§'(X)=U{8(Y); Y =X and Y (o) < »'(X)},
where given Y such that ¥ = X, for some #(Y)e F(z) and I(Y) < »,
yeS(Y) < @(Y),yelyyy or (y,y>elyy,).

Again, [n'(X)| < | XclF(X)| < Pl Xehy. Put n(X) = n'(X).

This completes the definition of the ramification system #. Further,
Lemma 3.1 (iii) applies to #. Hence there is a sequence XN n SEQ,
for which 8'(X) # @. Choose such a sequence X. For each ¢ < p put
z, = #(Xl 04 1) whenever z(X [0 1) is defined. By Lemma 3.1 (i),
if 7+1< o, then z, # z,. Now it follows

(1) T < U < Q alnd .X(Z'T) # n’(xr 2"[) = <w2.a’ -7:'2.,>€A1(X)2,,+1),
for @, ,e F(X120) c §(XI20) c S(X 1274 1). Also
(2) 7<o<p and X(2:7)=n(X12'7) > (&1 Taor1) € Dyxizrez)r

for @, ,.,eF(X12:0) c 8 (XI20) c8(XI2:7+2).
For 7 < g, either X(2:t) =n"(X12'7) or X(2'7) #n'(X[2-7).
Hence there is H < p with |H| = ¢ such that either

(3) teH = X(2-7) #n' (X[ 2-7),
or .

(4) TeH = X(2:7) = n' (X12-7).
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Let H be partitioned, H = () {4;; ! < v}, where
A= {reH; (X12:74+1) =1}
if (3) holds, or if (4) holds
' Ay = {reH; 1 (X1 2-742) =1}.
Since by assumption A; — Y7;°2; I <#)! and |H| = ¢ = 1,, there

are I < H and ! < » such that I has order type 7,2 and I £ 4;. Enumer-
ate I as {r(a); a < ;°2}, in increasing order. If (3) holds, put
Hy = (@500 m<a< n2}, H;= {“72~r(u)§ a < i},
whereas if (4) holds, put
H, = {m2-r(u)+1; a<ny, H,= {wz-r(a)-l-l; < a< g2}
Then H,, H, both have power 7;,, and it follows from (1) and (2) that
Hyx H, c I.

This proves the theorem when the #; are all cardinals. A slight mo-
dification of the argument above allows the x, to be chosen so that 741
< o = o, < ¢,. The general case then follows.

3.3. COROLLARY (*). Let a >0, » < Cf(R,) and n; < CE(R,) for 1 < .
Then Rop1 —> (Ray1y M5 U< 9N -

Proof. Put 4, = Cf(N,) and A, = N,,;. Then 1, is regular, so
* that 4, — }(4,)! and hence, in particular, 1, — (#;-2; I < »)1. Since i, < N,,
if ¢ < 4,, then

(I X oAy ) < (CE(R,) X M) = (Ra)' = R < Koy
Further 1, - %(4;);. Thus Theorem 3.2 applies with » = §,,,. This
yields the result.

A similar result can be reached for inaccessible cardinals.

3.4. THEOREM (*). Let x be strongly inaccessible. Take v < » and
for each 1 < v let n; < x. Then x — *(x, np; 1 < »)L

Proof. The proof is very similar to that of Theorem 3.2. Put
Ay =%, 80 A, —>%x). Put 4, = (X {lml*; 1<»}}*, so 14, <=x Then
Ay > Y|t 1< v), so certainly A, = (n,°2; 1 < »)L

Suppose x X x is partitioned, xx » = 4 U {J {I}; ! < »}. The proof
now becomes almost. identical to that of Theorem 3.2, except that the
application of Lemma 3.1 (iii) is replaced by an appeal to Lemma 3.1 (iv).

§ 4. The main theorem -

The method of proof of the Stepping-up Lemma of [2, p.107] is
used to prove the following two lemmas. Together, these yield the main
theorem, Theorem 4.3.
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4.1. LEMMA. Let m,n;, ..., 0, =>1. Let 2 be a cardinal 3uch that

;. 7]” NYsvees My
2 d ’
A Nt/ 1<y

wheré the 7, are infinite cardinals. Suppose x is such that i < Cf(x) and
0 <A = |y < Cf(x). For each 1 < v, suppose that Cf(ny) > tgy ey Nur-

Then
% V ﬂll n1+1,n2,....nm
Ak :
x Nm1f 1<

Proof. Suppose the hypotheses of the lemma hold. Let any disjoint
partition 4 = {4;; 1 < v} of [#]1"' X [x]"2X ... X [x]"» be given. Define
inductively a ramification system 2 on x of length ¢ = 2, together with
elements x(X) for certain X ¢SEQ, with ¢ < p. Let ¢ < ¢ and suppose
S’ (X) has already been defined for some XeSEQ,. If 8’ (X) =@, put
F(X) =0 and n(X) = 0. Otherwise, choose 2(X)eS'(X) and put F(X)
= {#(X)}. Place G(X) = {#(Xl1); 1< o}. Define a partition I'(X)
of §'(X)—F(X) as follows

y = z(modI'(X)) < Va,e[G(X)]"Va,e[G(X)]*2 ... Va, e[G(X)]'m
(<a'1 U (¥} agy ..., 8,) = (a, U {2}, a3, ..., 0, (mOdA))-
Put »(X) = |I'(X)|, and for YeSEQ,,, such that Y =X and Y(or)
< n(X), let 8(Y) range over the classes of I'(X). This defines Z.

For o < g, put i, = |v|*, where u = |o|™"m, Then |[n(X[ 1)< A4,
whenever X ¢SEQ, and 7 < o < . Moreover, if ¢ < g, then 1 < Cf(x).
Hence Lemma 3.1 (iii) applies to #, and so there is XeN N SEQ, for
which §'(X) # @. Choose such a sequence X. Then x(X | o) is defined

for each o < o. Put @, = z(X o) for o < g, and choose ,¢8 (X). Thus
for any o < o, if y,ZeS'(X!‘a) then

Yy =2(modl'(X o)) < Vae[{r,; a< o} ... Vage[{z,; a<< a}'m
(<ar U {3}, @z , - > = {a, U {2}, @y, ..., @, (mod 4)).
Now if o <7< g, then = eF(XPt) c8(XI7) e §(Xo+1), and
so if T<p and a;e[{®,; a < 7}]" for ¢ =1,...,m, then
81 U {8}, Gay o0y B) = (01 U {8}, Gsy -, @) (M0Q A).

Further, if ¢ < 7 < g, then by Lemma 3.1 (i), F(Xlo) N F(X[7)=0
and so 2, # o,.
Put W = {z,; a < g}, 80 |W| = o = 1. Define a partition [W]™ X
X [WI'm = U {4;; 1 < v} by, for I <,

By ooy By edy <> {8y U (B}, Bgy oony QY ey
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By relation (1), there are Il <y and a sequence H,,..., H,, where
H,e[W]" such that [H,JMX ... X [H,]"® < 4;. Since it is assumed
that Cf(ny) > 71y -y 7oy take H e[H,]"’such thatz, e and v,e H, U...U H,,
= ¢ < 7. But then [H""' X [H,]® X ... X [H,]"™ < 4,. This proves 4.1.

4.2, LEMMA. Let m,n,,..., %, > 1. Let 2 be a cardinal such that

A N\t
(2) (. =d ’
A Nmif 1<v

where the 7, are infinite cardinals. Suppose x is such that 1 < Cf(x) and
o< i ="l < Cf(x). For each 1 <v suppose that Cf(1) > ny, ..., -
Then

% A l,nl....,nm
.4

1M

# NMmi/ 1<v

Proof. The proof is similar to that of Lemma 4.1, and so will
not be given in full detail. Any undefined notation is taken from 4.1.

Define a ramification system similar to that used in the last proof,
except that the partition I'(X) of §'(X)— F(X) should satisfy:

y =2 (mod (X)) < Va, e[G(X)]™ ... Va, [G(X)]"({y, a1, ..., a,)>
= {2, a1y..., 8,) (mod 4)).

An application of the Ramification Lemma yields distinct elements :1;,,'
for a < ¢ such that if v < p and a;e[{zr,; a<}]% for ¢ =1,...,m,
then

(Bry Bry enny Q) = (Tyy Byy ---y Q> (Mod A4).

Put W = {#,; a< g}, and define a partition [W]"1x ... X [W]'m
= UJ{4;; L<»} by, for 1<y,

’
By oovy Qe dy <= (Byy Gyy onny Oy ed;.

By property (2), there are I <+» and a sequence H,,..., H,, where
each H; = W and has power 7, such that [H,]" X ... X [H,]'™ < 4;.
Put H = {z,eW; Vt < g(#,¢eH, U... UH, = 1< a)}. By the property
assumed for 2, then H has power 2. Since H x [H, ] X ... X [H,]"» < 4,,
the proof of 4.2 is complete.

These lemmas combine to yield:
4.3. THEOREM (*). Let » < CE(R,) and let ny, ..., n, > 1 with n, > 1.
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Then

az-:+n2+...+n,,,,—l e S
gd"-"l]_-l-n.-i-ﬂf”"'--l R
(1) . — :

Natnp-1
N, v

Proof. We shall use the known result"

aa'+nl+...+nm—1

(2) sa+ﬂ,,,.,,,'—l - l(xa):hm

from .[1, p. 468]. Note that o <R, _, = njlol < Roin,-1; and that
Rapn,—1<Rapn, = Cf (N, +nm). Also since n,, > 1, it follows that Rayn, 1> N,
Thus Lemma 4.2 may be applied to relation (2), to deduce

(3) (&H_nm) = (xa g~ l)l,nm -

s:t+ 7y, aCI v

Lemma 4.1 is now applied to relation (3)#n,,_,—1 times in succession,
and yields

(4) (s“‘*'”m—l"'”m"l) s (ga+”m_l)“m—l’"m .
: X,

x"“'"m—l‘l'"m_l 4

Another application of Lemma 4.2, this time to property (4), gives

1, T
s‘”"‘m—l""‘m x""’"m—l*‘”m‘l 1 m
Rotn, (+n,] > | Ragn,—1 .

Na{:nm__l{-nm xt:!

1 4

By continuing in this manner, relation (1) can be established. This
concludes the proof.
The following special cases are worth noting:

4.4. COROLLARY (*). If v < Cf(x), then

o R K F\b2
xt T x |, -

This provides the answer to a question posed in [7, p. 85].
4.5. COROLLARY (*). If v < Cf(x), then

ot N wt\22

4.6. COROLLARY (*). If » < CE(R,) and n > 1, then Ry, mn_1 — ™(Ra)7.

This is the promised improvement to Corollary 1.5. Note that the
result excludes the case n = 1. In this event, the following theorem appears
as Corollary 17 in [2]:
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4.7. THEOREM (*). For all infinite x», x* — *(x);.

For cardinals cofinal with R,, a slightly stronger result will be proved
in § 5. By applying Lemma 4.2 to Theorem 4.7, we obtain

4.8. THEOREM (*). If a >0, then R, m_, — (R

In fact, slightly stronger results pertain, e.g.

4.9. THEOREM (*). For all infinite x, '

. L\ L1
¥t > x
o+t % |,

In view of the negative results of § 2, some of the most simple unan-
swered questions are seen to be:

4.10. PROBLEM (*). I's x™+ — *(x); true? If x > x~, 18 in fact x* — *(x);
true?

4.11. PROBLEM (*). Is »* —3(x); true? Is »*t —*(x), true?

Here, Lemma 4.2 shows that a positive answer to the second part of
Problem 4.11 is implied by a positive answer to the first.

The question of extending the relation of Theorem 4.7 to partitions
involving more than two classes is also unsolved in general. A special
case will appear as Corollary 5.14 of the next sext section.

§ 5. A result for cardinals cofinal with §,

The following relation (1) is proved in [2], Theorem 42(*), for the
case » = 2 and Cf(x) = N,:

@ ()=

In the present section, this result will be extended to cover the situation
» < R, and Cf(x) = R;. To the best of my knowledge, when Cf(x) > ¥,
the truth of relation (1) is still open. The following sequence of lemmas
is required. The result is finally proved in Theorem 5.13.

5.1. LEMMA. Let p < R,, and suppose

% "'
() (”+).—>(Cl)l<u.

Then the following relation holds:

2 — Dissertationes Mathematicae XC @
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Proof. Use induction on p. If p = 0 the lemma is trivial. Assume
the result true for some ¢ < 8,. Take a disjoint partition

xX xt = A0 J{4; 1<},

and suppose that for ! < » there are no sets H, < %, H, < x* having
order types 7; and ¢, respectively, for which Hyx H, < 4;. By the induec-
tive hypothesis, there must then be sets Se[x]* and Te[x"]? such that
SxT c A.

For < xt, put Q(B) = {aex; (a,f>ed}. If there is Bext—T
such that |§ NQ(B)] = x, then (8 NQ(B)X(T v {}) = 4, and the
result follows. So suppose that |§ N Q(B)] < x for all fex™ — T. We shall
show that a contradiction results. :

For »' < x, put T(x') = {fex*—T; |8 nQ(B)] = »'}. There must
be some A < x with |T(4)] = x*. Write § as a disjoint union, S =
U {8,; u < i*}, where each |8, = ». If ST (), then SN Q|(B)| = 4
< it and hence -there is p(f) < A* for which 8,5 NQ(B) =0a.
Bince x* — !(x*)!, there are Ye[T(1)]*" and g < A* such that fe¥ =
= u(f) =pu. Then 8§, N@Q(f) =0 for all fe¥. Hence §,XY <
U{4; t<»}. Now |8, = » and |¥| = »*. Thus by relation (1), for
some | < » there are H, < §, and H, = Y, having order types », and ¢,
respectively, for which H,x H, < 4;,. This contradicts the assumed
property of the partition.

Thus the induction step is completed, and the lemma proved.

5.2. LEMMA (*). Lot » be a singular cardinal with the property

% "
() ("+) _)(4'1)1«'

For some ¢ > x let there be given a partition
xxt =AvJU{4; 1<}

such that for nol < v are there sets Hy, < 1 and Hy = x*, having order types 7
and ; respectively, for which Hyx H, < A;. Let 1 be any regular cardinal
with Cf (%) < A < x. Let A<[t]* and B = x*. Then there is a set A* < [A]*
with |A*| < % and there is a map f from A* to the subsets of B such that
aed® = axf(a) < 4, and [B—U {f(a); aed*}| < x.

Proof. Take Ae¢[:]* and B < x*. For g < »* put @(f) = {a < ¢;
{a,pB>ed}. Let By = {$B; |A nQ(B)| < A}and B, = B—B,. Lemma 5.1
applied to relation (1) yields in particular

()~ ()"
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Now AX B, € AU (J{4; I <»}. Thus if |B,| = x*, either there is
f B, such that |4 N Q(B)| = x (contrary to the definition of B,), or there
are l < v and K, < 4, K, < B, such that the order type of K, is #,, the
order type of K, is {; and K, x K, < 4; (contrary to the choice of the
partition). Hence it must be the case that |B,| < «.

Choose cardinals x, < x for o < Cf (x) such that » = }'{x,; ¢ < Cf(x)}.
There is a disjoint partition A = | J{4,; ¢ < Cf(x)}, where [4,| = «,.
Put A* = U {[4,]}; o< Cf(x)}, so |A*| < Y {x}; o< Ci(x)} < x TFor
aeA*, define f(a) = {feB,; a =< A NQ(B)}, so ax f(a) = A and f maps
A* into #B. Further, for each feB, there is acA* for which fef(a),
since otherwise |4, NQ(B)| < A for all ¢ < Cf(x), and so by the regularity
of 1 and the definition of B,,

A<IANQE) =) {14, nQ(B); o < CE(x)} < 4.

Hence B, = |J{f(a); aeA®}. This leads to the required result.
5.3. LEMMA. Let x > R, and Cf(A) > x». Let p R, and suppose

1w 7 1,1
(o

Then it follows that

1,1
' % P{m
2 .
( ) (;') _>(;' (Cl)l<r)
Proof. By induction on p. The case p = 0 is trivial. Assume (2)
holds with p = ¢q. Take a disjoint partition

xxXA=A4vJ{4; 1<},

and suppose that for ! < y there are no sets H, < », H, < 1 having order

types #;, {; respectively, for which H,x H, < 4;. By the inductive hy-

pothesis, there must then be sets Se[%]? and Te[1]* such that Sx T < 4.
Put P(a) = {fel; {(a,f)ed}. Then

(x—8)X (T— U {P(a); aex—8}) = U{4y; 1 < }.
Now |x— 8| = x», and so by relation (1) and the choice of the parti-
tion, |T—(J {P(a); aex— 8} < A. Hence |T N |J{P(a); aex— 8} = 4.
Since Cf(4) > x, there must be aex— 8§ for which |T N P(a)| = A. But
(8 U {a}) X (T nP(a)) < 4,

and so since |8 U {a}| = ¢+ 1, the induction step is complete. This esta-
blisches Lemma 5.3.
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The following two lemmas are quoted without proof. They follow
from [2], Lemma 8(*) and Lemma 3A(*), respectively.

5.4. LEMMA (*). Let » and A be infinite cardinals with Cf(x) # Cf(2).
Let |A| = %, |B| = x* and for each beB let there be given a set A,e[A]>.
Then there is B' ¢[BT*' such that |() {4,; beB'}| > 4.

5.5. LEMMA (*). Let x be singular, and let the cardinals x, for o < Cf(x)
be such that o <1< Cf(x) > %, < x, < x, and x = D {x,; o < Ci(x)}.
Lét v < x and suppose a digjoint partition i8 given, x X x» = | J {4;; 1 < »}.
Then there are sets A,, B, and ordinals h(o, T) < v such that

Aye[xT% Bye[xls, v#0=>4,0n4,=B,nB, =0,
0, T < Ci(%) = A; X B, S dyo,5)-

5.6. LEMMA (*). Let x be infinite, and suppose

W ()~ (2.

Then for any A < x,
' % Ay V!
@ ("+) —>("+ (Cl)k;) )

Proof. The case x» =8, is immediate from Lemma 5.3, so
suppose x > R,. Define ¢ as follows: if Cf(») = x», then : = 1; otherwise
t = AT +o(Cf(x))*. In either case, A<<¢< x» and Of(:) 5 Cf(x).

Take any partition, xx x* = 4 U |J{4;; 1 <+}. To establish (2),
we must find sets Hye[x], Hle[:f’]"+ such that Hyx H, < 4, or -else
!l < and sets H, < », H, < x*, having order types %, {; respectively,
such that H,x H, c 4,.

Put T = {fex™; |Q(B)] = ¢}, where Q(B) = {aex; {a, f)<4}. Suppose
|T| = »*. Then by Lemma 5.4, there is T"¢[T]*" such that | {Q(8);
BeT} =1 Since MN{Q(B); BT }xT < 4, there is nothing more to
be shown. So consider the case when |T| < x*. Then [x"—T| = xt.
Since ¢+ < %, there is a disjoint partition » = |J{S,; u < '}, where
|8,] = = for each u < :*. However, |Q(B)| < ¢ for fex™ —T. Hence for
each fext— T, there is u(f) < ¢+ for which 8,5 N Q(B) = . Moreover,
there must be u <" and Tle[n+—T]"+ for which BeT, = u(f) = p.
Now 8, NnQ(B) =0 for T, and so 8, xT, = (J{4; I <»}. Since

|8, = and |T,| = »", the result follows from relation (1). This
concludes the proof.

5.7. THEOREM (*). If Cf(x) = N,, then for any p < R,

()= G,
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Proof. By induction on p. The case p = 0 is trivial. Assume the
result is true for some ¢ < 8,. Take a partition

xxXxt =40 U{d; 1< g},

and suppose that there are no sets Hye[%]", H le[;c+]"+ with Hyx H, € 4,
nor sets Hye[x]*, Hye[x"f with Hyx H, = 4, for any le{l,..., q}. We
must find sets Hye[x]*, Hye[»* ] with H,x H, < 4,.

Write x = 3 {x,; 7 < R}, where %, < x for r < R,. Define inductively
sets D,, B,e[x*]*", A,e[x]" and y,eB, for r < R, as follows:

By Lemma 5.6 and the inductive hypothesis, choose

D,e[x]® and Bye[»T]*" such that D,x B, < 4,.
By Lemma 5.1 and the inductive hypothesis, choose
Ayge[#]* and y,eB, such that Ayx {y,} < 4,.
Generally, by Lemma 5.6 and the inductive hypothesis, choose
D,e[A,_,]* and B,e[B,_,—{y,_,}T*" such that D,x B, < 4,.
By Lemma 5.1 and the inductive hypothesis, choose
A,e[A, 7 and yreB, such that A,x{y,} < 4,.

Put Hy, = U{D,; r <8} and H, = {y,; 7 <R}. Then [H,| = x
and |H,| = 8,. Note that if r < s, then D, x {y,} < D,x B, < D, X B, < 4,.
And if r>s, then D, x{y,} <€ A, x{y,} < 4,. Hence H,x H, < A4,
and the induction step is complete. This proves Theorem 5.7.

5.8. COROLLARY (*). If Cf(x) = R,, then for any p,q < R, and any

) L)

Perusal of the proofs of the preceding resnlts shows that (*) is not
required for the special case » = §,. Thus we obtain

5.9. COoROLLARY. For any p < N,,

1,1
() - Gel)
R, R, \Ro/p
5.10. LEMMA (*). Let == R, and p < 8,. Take any partition

xxXx =4 vl J{4; 1 <p}.

If there are mo sets H,, Hle[x]" with Hyx H, < A, then for some | < p
there are H [ x]* and a e x such that either H X {a} < A, or else {a} x H < 4,.
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Proof. By an obvious induction. The case p = 1 comes as a special
case of Theorem 38(*) of [2].

5.11. THEOREM (*). Suppose » 18 singular; let A< x and p < §,.
Then

) -

Proof. By induction on p. The case p =1 is frivial, so suppose
the result is true for some ¢ with 1 < ¢ < R,.

We may suppose that Cf(x) < 1< %, and that 4 is regular. Put
o = Cf(x). Choose cardinals x», for ¢ <p such that » = > {x,; o < ¢}
and- 2 < %, < %, < » when ¢ < 7 < p. Take any disjoint partition

(2) xxxt = U {4; 1< ¢}

and suppose that whenever 1 <!< q then there are no sets Hje[x]*
and H, e[»*]*for which Hyx H, < 4,. We must find Hye[x]* and H,e[»*]
such that H,X H, < 4,.

Suppose that ¢ is regular with ¢ < ¢ < x». Take any Ae[x]* and
Be[x*}". Then by Lemma 5.2, there are A* < [4]° with |A*| < » and
a map f from A* to the subsets of B such that

(3) acd* =>axf(a) € 4y, |B—{f(a); aed®}| < x.

Define inductively a ramification system #£ on x* of length g as
follows. Take ¢ < ¢ and X eSEQ,. Suppose that §'(X) has already been
defined. If |8 (X)| < x, put F(X) = § (X) and n(X) = 0. If |§'(X)| = «¥,
put n(X) = » and choose R(X)e[§ (X)]*. Then by applying (3) with
A =% B =8 (X)—R(X) and : = x,, one can find a set 4*(X) < [x]*
with |4*(X)| < %, and a map fy from A*(X) to #B, which together
satisfy the appropriate form of (3). Write A*(X) ={a(¥); ¥ =X
and Y(o) < x}. For YeSEQ,,, such that ¥ = X and Y (o) < %, put
8(Y) = fx(a(Y)). Define

F(X) =R(X) v (S'(i')— U{S(Y); Y =X and Y(o) < x}).
This defines #£. Further
7| = |Bl4-0|(8 —R)— U{S(¥); ¥ = X and Y (o) < x}|
= |R|+¢|B— U{f(a); acA®},

and so |F| = %, by (3). Hence Lemma 3.1 (iii) applies to %, so choose
a sequence Xe¢N N SEQ, such that 8'(X) # @. Then for each o < g,
it must be that |8 (X a)| = »*, and so always R(X! o) is defined. Choose
a bijection gy, , from [x]* onto [R(X I ¢)]". Put

9(0) = gxya(a(X T o+ 1));
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then always g¢(o)e[R(Xlo)]**. Put 4 ={J{e(X1o+1);0<p} and
B =J{g(0); o < o}. Then Ae[x]" and Be[x*]*. Moreover, if ¢ <7< g,
then '

g(r) S RXI7) s 8 (X7 < 8(X!o+1).
However, a(X! oc+1)X S8(XlTo+1) <€ 4, by (3), and so
(4) e<Tt<g =a(Xlot+1)Xg() < 4.

The partition (2) restricts to a partition of A X B. Hence by Lemma
5.5, there are sets A,e[ A1, B,¢[B]* and numbers (o, ) < ¢ such that
ife<t<p,then A, "4, = B, n B, =0, and also .

(5) 0,71< @ > A, XB, S Ayqy-

For 1<gq, put 4;={o, DepXxpo; h(s,7) =1}. Thus oXop

= |J{4;; 1< ¢q}. Apply Lemma 5.10 to this partition of o X .
There are three cases to consider.

Case 1. There are He[p]%, 7<p¢ and ! with 1 <I<q such that
h(o,7) =1 for all geH. Put A" = (J{4,; oeH}; then |A'| = x, and
A’ X B, < A, by (5). Since 1 < x,, this contradicts the choice of the parti-
tion (2).

Case 2. There are He[p]’, o< ¢ and I with 1 <1< ¢q such that
h(o,7) =1 for all veH. Put B’ = |J{B,; veH}; then |B| =%, and
A,x B = 4, by (5). Choose acA,. Then {a}x B’ < A4,. Further, there
is 0, < o such that aea(X ! o;4+1). Hence it follows from (4) that B’
c U {g9(7); < o,}. However, this yields the contradiction

x=1B1< Y {lg)l; 1< 0} = {0 1< 00} < .

Case 3. This case must prevail. There are K,, K,e[p]° such that
h(o,7)’ =0 for oeK, and teK,. Put H, = |J{4,; o0¢<K,} and H,
= U{B,; teK,}. Then Hye[x]*, H,e[%x"]*, and H,x H, < 4, by (5).
Since A < x, the induction step is complete. This proves Theorem 5.11.

5.12. LEMMA (*). Let x be uncountable with Cf(x) = R,. Take p, q < R,
with ¢ > 1. Suppose for all « < x that

()60

Then for all 1 < x,

()= (20, 0,.)
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Proof. Let 2 < x be given. Choose cardinals x», < x for r < §,
such that x».= )'{x.; r <R} and A< % < %,... Take any partition

3) X xt = U4y 1<p+1;} v U{l; k<q—1},

and suppose that for all I < p there are no sets Hye[x]*, H,e[»x"]* with
H,x H, < 4,, and also that for all ¥ < ¢g— 1 there are no sets He[x]",
H e[x*]* with Hyx H, = I',. To establish (2) we must find sets H,e[x],
H,e[x*] such that H,x H, < 4,. From (1) it follows that

()=, 60

and so by Lemma,.5.6, we obtain, for any ¢ < x,

()= {, -GS

Take any r < N, and any sets 4 ¢[x]" and Be[x+]”+. By (4) and the
choice of the partition (3), there are A’, B’ such that

(5) A'e[A]r, B'¢[B]", A'XB c 4,.

Since x, < x, by (1) and the choice of the partition (3), there are A", B”
such that

(6) A"e[AT, B'¢[BJr, A"XB’ < 4,.

Use induction over r < R, to define the sets A;e[x]*, B; e[t T, A,
and B, as follows. Put 4] = x» and Bj = »*. Suppose A}e[x]* and B;

e[x+]"+ have already been defined for some r < R,. By (5), choose A,
and Bj,, so that

A,e[A¥Tr, Bl e[BI**, A,XB, < 4,.
By (6), choose A;,, and B, so that

Ay e[4;T BrG[B:+1]”r! A7 X B, € 4,.
Then for all r < 8,, the following hold:
A:+1 c A:r B:'+1 = B:I IA:l = %, |B:| = x¥,

IAr‘ = Xp, |Brl = %,. .

Put A = J{A4,; r<w} and B = J{B,; r <®,). Then Ae[x]*
and Be[x*]* Thus to prove the lemma, it suffices to show

(7) AXB c 4,.

Take r, s < R,. We must show that 4, x B, c 4,. However, if » < s, then
B,c B, ,<Bl,and so A, xB, < A,xB},, € 4,. If r>s, then 4,
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c A} < 4;,,, and so A4,X B, < 4;,,x B,c 4,. This establishes (7),
and completes the proof.
5.13. THEOREM (*). Suppose Cf(x) = R,. Then for any p < R,

1,1
£)-(3

Proof. The case » =8, is a consequence of Corollary 5.9, so
suppose » > R,. Then by Theorem 5.11, for all A < «,

()= (3,

Repeated applications of Lemma 5.12 now yield the result.
The result of Theorem 5.13 is clearly the best possible, for if Cf(x)
= N,, then it is easy to see that

(= (-

There is the following corollary to Theorem 5.13. (Compare with
Corollary 3.4.)

5.14. COROLLARY (*). Suppose Cf(x) = R,. Then =" — *(x)), for any
P <N

Thus for partitions of »* X »*, the most simple open questions are
seen to be:

5.15. PROBLEM (*). Is % — %(x); true if Cf(x) > R,? Is »t — 2(")'1‘0
true if Cf(x) = R,?
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