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LOCALLY CONVEX SPACES WITH FACTORIZATION PROPERTY

RY

J. GORNIAK (WROCLAW)

0. Introduction. In this paper* we present three new classes of locally
convex spaces: spaces with factorization property, pseudo -barrelled spaces,
and spaces with s-factorization property. These spaces arise in the study of
dilations of operator valued functions in non-Banach spaces. The aim of the
paper is to describe a place of these spaces in the large class of locally
convex spaces. . \

In Section 1 we define the class of locally convex spaces with factoriz-
ation property. This class is large and contains pseudo-barrelled spaces and
the spaces with s-factorization property. We also give (cf. (1.4)) an example of
a locally convex space which does not have the factorization property. In
Section 2 we study the class of pseudo-barrelled spaces. This class contains
plenty of well-known spaces: quasi - barrelled spaces, and — in particular -
barrelled and bornological spaces, .% - spaces, spaces with mixed topologies,
and some generalized inductive -limits. In Section 3 we present the spaces
with s-factorization property. This class contains every barrelled space.
Therefore, every barrelled space is pseudo-barrelled and has the s-
factorization property. We give examples of locally convex spaces with
factorization property: 1° spaces which are pseudo -barrelled and do not
have the s-factorization property (cf. (3.4)) and 2° spaces which have the s-
factorization property and are not pseudo -barrelled (cf. (2.3)).

Applications of the spaces with factorization property to the theory of
positive definite kernels (cf. [3] and [12] for the classical results and [14],
[19], [16] for the Banach space case) and to the dilation theory (cf. [17],
[15] for the classical results and [8], [20] for the Banach space case) are of
some interest — for details see [9] and [6], [7].

1. Spaces with factorization property. Let E be a complex Hausdorff
locally convex space and E’ its topological dual.

* The results of the paper are taken from the author's Ph. D. Thesis, Wroclaw Technical
University, 1977.
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By L(E, E') (CL(E, E')) we denote the space of all antilinear (continuous
antilinear) mappings from E into E’ being equipped with the strong topology
B(E', E), i.e., the topology of uniform convergence on the bounded subsets
of E.

CL(E, H) denotes the space of all continuous linear mappings from E
into a Hilbert space H.

For AeCL(E, H), we define the adjoint mapping A’ CL(H, E') by the
formula

(1. (A f)(x)=(Ax,f), feH, xeE,

where (¢, *) denotes the inner product in H.

We say that the mapping A€ L(E, E’) is positive if (Ax)(x) = 0 for each
xeE.

Now, we introduce a new class of locally convex spaces.

(1.2) Definition. A locally convex space E has the factorization property if
for each inner product (-, ©) defined on E and satisfying the condition

(1.3) pg(x) =sup |(x, y)| < x for each bounded subset B < E and the
yeB
semi-norm pg(x) is continuous,

the function E3x —(x, x) is continuous.

Next, we give an example of a locally convex space which does not have
the factorization property.

(1.4) Example. Let s, be the vector space of all complex sequences having
only a finite number of terms different from zero. We introduce a topology 1
in s, by the family of semi-norms

(15) pNo.lM"I(x) = Z Mnlxn|9 X =(xls X2, ...)GSO,
neNg
where N, is an arbitrary subset of positive integers with density equal to
zero, 1.e.,
lim card {Non i1, 2,..., n}}

n—x n

=0,

and |M,} is an arbitrary sequence of non-negative numbers.

Note that a subset B c s,, is 7-bounded iff there exist a natural number
n, and a constant C >0 such that the condition x =(x,),-, €B implies
x, =0 for n>n, and |x,| < C.

We dehine an inner product (-, ©) in a locally convex space (sq, t) by

(1.6) (x, )= Y X P X, YES,.
k=1
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Observe that the inner product (1.6) satlsﬁes (1.3), but the function
So3x = (x, x) = Z |/

is not continuous because for each constant M > 0 and for each semi-norm
p(x) in the family (1.5) there exists xes, such that (x, x) > Mp(x).

(1.7) THeOREM. Let E be a complex locally convex space and E' its topological
dual with the strong topology. Then the following conditions are equivalent:
(i) E has the factorization property.

(ii) For each positive mapping Re CL(E, E') the function E> x — (Rx)(x) is
continuous.

(iii) For each positive mapping Re CL(E, E') there exist a Hilbert space H
and a square root TeCL(E, H) of R, i.e, R = T' T. Moreover, if H is minimal
in the sense that it is generated by the elements of the form Tx, xe E, then H
and T are unique up to unitary equivalence.

Proof. (i) =(ii). Let E have the factorization property. Define an inner
product in E by the formula (y, x) = (Rx, y), x, ye E, where ReCL(E, E') is
positive. This inner product satisfies (1.3). Indeed, if B < E is a bounded
subset, then pg(x) =sup |(Rx)(y)| is finite for each xeE because Rx is

eB

y
bounded on B. Moreover, pg(x) is continuous, which follows from the
assumption that ReCL(E, E'). Consequently, by (i), the function E3x
—(x, x) = (Rx)(x) is continuous.

(ii) = (iii). Let ReCL(E, E') be positive. By (27) in [9] there exist a
Hilbert space H and a linear mapping T: E — H which is continuous on the
bounded subsets of E and such that R = T’ T. Hence || Tx||> = (Rx)(x) and,
by (ii), T is continuous, ie., TeCL(E, H).

(iii) = (i). Suppose, conversely, that (-, ©) is an inner product in E for
which (1.3) holds but the function E>x — (x, x) is not continuous. Then the
mapping R: E —» E’ given by the formula (Rx)(y) =(y, x), x, yeE, is well
defined, positive, and Re CL(E, E’), but the function E>x — (Rx)(x) is not
continuous. On the other hand, it follows from (iii) that (Rx)(x) = || Tx||? for
each xeE and, consequently, the function E>3x —(Rx)(x) is continuous
because Te CL(E, H). This contradiction completes the proof.

2. Pseudo- barrelled spaces. In this section we introduce and discuss a
new class of locally convex spaces — pseudo -barrelled spaces. Pseudo -
barrelled spaces have the factorization property (Theorem (2.2)) and contain
plenty of well -known spaces: quasi - barrelled spaces, and — in particular —
barrelled and bornological spaces, /.# -spaces, spaces with mixed topologies
in the Wiweger and Persson sense, and some generalized inductive - limits.

We also give an example (Example (2.3)) of a locally convex space with
factorization property, which is not a pseudo -barrelled space.



72 J. GORNIAK

(2.1) Definition. We say that a locally convex space E is pseudo - harrelled
if each semi-norm p(x) on E, being lower semi-continuous and continuous
on the bounded subsets of E, is continuous.

(2.2) TueoreM ([9], Proposition (3.1)). Each pseudo - barrelled space has the
factorization property.

The following example shows that the converse of Theorem (2.2) is not
true.

(2.3) Example. Let Z be an uncountable set and sy(Z) the vector space of
all complex functions x:Z — C having only a finite number of values
different from zero.

We introduce a topology t in sy(Z) by all inner products

(24' (x, y) = z Ayp Xy Yoo X = (xu)uel’ y= (yu)ueleso(z),
u,veZ
ie, by all positive definite forms on s¢(Z).
It follows from Definition (1.2) that a locally convex space (so (Z), t) has
the factorization property.
Now, we shall prove that the space (so(Z), t) is not pseudo - barrelled.
Define a semi-norm p(x) on sy(Z) by

p(X) = Z lxula X = (xu)ueleso(z)'
ueZ
The semi-norm p(x) is lower semi-continuous and continuous on the
t-bounded subsets of s,(Z) (each t-bounded set is finite dimensional and
bounded in an ordinary sense) but is not continuous. Indeed, suppose,
conversely, that p(x) is continuous. Then there exists a positive definite
matrix (a,,) such that

(25) Y <[ Y awx®] X =(Xher€50(2).
- ueZ u,veZ

Inequality (2.5) shows that the identity map I oﬁ the inner product space

So(Z) (with a strictly positive inner product given by the matrix (a,,+d,,)

and formula (2.4)) into the normed space I' (Z) (i.e., a set 5o(Z) with the norm

lixll = Y |x,)) is continuous.

ueZ

Denote by 35,(Z) the completion of s5,(Z) and by A: §,(Z) — I'(Z) the
linear continuous extension of I. The space §,(Z) is reflexive and A: §,(2)
— 1'(Z) is compact. Hence the set A(5,(Z)) is separable. On the other hand,
the set A(S,(2)) contains an uncountable subset of functions 8,, ucZ (4,(x)
=1 for x =u and J,(x) = 0 for x # u). Since the distance ¢(9,, J,) equals 2
for u # v, A(5,(Z)) is not separable. This contradiction completes the proof
that (s,(Z), ) is not pseudo - barrelled.
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Now, we answer the question which spaces contain the class of pseudo -
barrelled spaces.

Let E be a locally convex space.

Every closed, absorbent, absolutely convex subset of E is called a barrel.

(2.6) Following Bourbaki [4] we say that a locally convex space E is
barrelled if each barrel in E is a neighbourhood of 0 or, equivalently, if each
lower semi-continuous semi-norm p(x) on E is continuous.

Every locally convex Baire space and, in particular, every Fréchet space
(metrizable and complete locally convex space) is barrelled.

2.7 A'locally convex space E is said to be bornological if every absolutely
convex set in E which absorbs all bounded subsets of E is a neighbourhood
of 0 or, equivalently, if each semi-norm p(x) on E, being bounded on the
bounded subsets of E, is continuous.

All metrizable locally convex spaces, as well as LB and LF spaces, are
bornological.

(2.8) A locally convex space E is called quasi-barrelled if every barrel in E
which absorbs all bounded sets of E is a neighbourhood of 0 or, equivalently,
if each semi-norm p(x) on E, being lower semi-continuous and bounded on
the bounded sets of E, is continuous.

Clearly, every barrelled space as well as every bornological space is
quasi - barrelled.

(2.9) CoroLLARY. Every quasi-bharrelled space (in particular, every harrelled
and every bornological space) is pseudo-barrelled. Consequently (by The-
orem (2.2)), it has the factorization property.

The corollary follows immediately from Definitions (2.8) and (2.1).

Grothendieck introduced in [10] the class of ~.%-spaces. A locally
convex space E is called a & .#-space if it has a fundamental sequence of
bounded sets and if each barrel in E, which absorbs every set in E and which
is an intersection of at most countably many closed, absolutely convex
neighbourhoods of 0, is a neighbourhood of 0.

(2100 Remark. We observe that the above definition of & .#-space is
equivalent to the following: a space E is a .#-space iff it has a funda-
mental sequence of bounded sets and if each semi-norm p(x) on E, being
lower semi -continuous and bounded on the bounded subsets of E and being
the least upper bound of a collection of at most countably many continuous
semi-norms on E, is continuous. .

(2.11) ProposiTiON. Every % -space E is pseudo - harrelled.

Proof. Denote by u the topology in E. We remark that u is the finest
locally convex topology on E, which is identical with itself on the u-
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bounded subsets of E. In fact, if u’ is the finest locally convex topology on E
which is identical with x4 on the u-bounded subsets of E, then by
Grothendieck’s theorem (cf. [13], § 29.3.7) the identity map I: (E, u) — (E, u')
is continuous and u = u'. Hence each semi-norm p(x) on E, being lower
semi - continuous and continuous on the bounded subsets of E, is continuous.

By a rwo - norm space we mean a triplet (E, ||*||, ||-||*) of a vector space E
and two norms |||, ||‘||*, the second being dominated by the first. A
sequence (x,),- is said to be convergent to x, in the two -norm sense (or y-
convergent) if

sup fIx,/| << and  |}x,—xol|* = 0.
n

The theory of the two -norm spaces has been developed by Alexiewicz and
Semadeni [1], [2].

Wiweger introduced in [21], [22] a topology T (called the mixed
topology) in a two - norm space (E, |||, ||||*) such that the sequence (x,),-, is
y-convergent to x, iff x, —» x, in the 7-topology ([21], (2.3)).

Suppose that there are two locally convex topologies 7 and t* in a
vector space E. Let #(7) and #(t*) be bases of convex neighbourhoods of 0
in topologies t and t*, respectively. For each sequence U} e #(t*) and for

each Ue # (1) Wiweger [21], [22] defines the set U? as
(2.12) U= U (UrAU+U2A2U + ... +U*~nU)
n=1

and proves the following:

(2.13) The family of all sets of the form (2.12) is a basis of neighbourhoods of
0 in the locally convex topology t’, called the mixed topology on E.

(2.14) ([22], 2.1.1) The mixed topology 7’ satisfies the inequality t* < 77,
Moreover, if t* <1, then 7 <.

(2.15) ([22], 2.2.1) The mixed topology 1’ coincides with t* on the rt-
bounded subsets of E.

(2.16) ([22], 2.2.5) If 7 is a norm topology, then t7 is the finest locally convex
topology on E which is identical with t* on the t-bounded subsets of E.

Wiweger [22] gives several examples of spaces with mixed topologies as
well as spaces with mixed topologies which are neither barrelled nor
bornological.

Persson [18] generalized the concept of two-norm space introducing
bitopological spaces.

(2.17) ([18]). A triplet (E, t, t*) of a vector space E and of two topologies
1, ™ on E such that every t-bounded subset of E is t*-bounded is called a
bitopological space.
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The finest locally convex topology on E which is identical with 7* on
the 7-bounded subsets of E is called the mixed topology on E and is denoted
by t’.

(2.18) Remark. If t is a norm topology such that every t-bounded subset
on E is t*-bounded, then the mixed topology in the Wiweger sense is the
mixed topology in the Persson sense.

This follows directly from the above definition and from (2.16).

(2.19) ProrosiTION. A locally convex space E with the mixed topology 17 in the
Persson sense (2.17) determined by the topologies t and t* (and every mixed
topology determined by t and t* as in (2.18)) is pseudo - barrelled. Consequently
(by Theorem (2.2)), ¥ has the factorization property.

Proof. Let (E, 7, t*) be a bitopological space, 7 the mixed topology,
and assume p(x) to be a lower semi-continuous semi-norm on E which is
continuous on the 7”-bounded subsets of E.

We have to prove that the semi-norm p(x) is continuous on (E, 7).

Denote by (S,),.4 the family of all 7-bounded subsets of E. The
restriction of p(x) to S, (denoted by p|S,) is continuous in the topology
7*| S, induced by * on §,. Indeed, by Proposition (1.1) in [18], every 7-
bounded subset S, (x€ A) of E is 77-bounded and p|S, is (t’| S,) - continuous.
This implies the (t*|S,) - continuity. Finally, for every t-bounded set S, the
restriction of p(x) to S, is t*-continuous and, by (2.17), the semi-norm p(x)
is 77-continuous.

Garling introduced in [S5] a generalized inductive - limit topology on a
vector space E.

Let a family (E,),., of vector spaces be given. Each E, is given a locally
convex topology t, and for each E, a linear mapping i,: E, — E is defined.
For each a4, a subset S, of E, is given. Denote by j, the restriction of
i, to §,.

(2.20) ([5]) The generalized inductive - limit topology on E, induced by the

family ((E,, T4, iy> So)}acar is defined to be the finest locally convex topology
on E for which each of the mappings j,: S, = E is continuous.

(2.21) Remark. It is easy to verify that the topology of every bornological
and every % -space is the mixed topology in the Persson sense and that
every mixed topology is the generalized inductive -limit topology.

Now, we show that some generalized inductive-limit topologies (in
particular, studied by Garling in [5]) are pseudo -barrelled.

(2.22) ProrosITION. The generalized inductive - limit topology on E induced by
the family {(E,, t,, iy, S,)}aca> Where for each a€ A the set S,  E; is bounded
and such that

(%) xeS,=axeS, for 0<axl
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(eg., if S, is an absolutely convex bounded set), is pseudo-barrelled.
Consequently (by Theorem (2.2)), it has the factorization property.

Proof. Let p(x) be a semi-norm on E which is lower semi -continuous
and continuous on the bounded subsets of E.

By Corollary 2 in [5], a semi-norm p(x) on E is continuous in the
generalized inductive - limit topology if, for each index a € A4, the restriction of
the semi-norm pj, to S,, ie., pj,: S, = E, is continuous.

Since S, is bounded and satisfies condition (*) and since j,: S, - E is
continuous, we deduce that for each xe€ A the set j,(S,) is bounded in E (cf.
[13], § 15.6.3). This, along with the assumption that the semi-norm p(x) is
continuous on the set j,(S,), yields the continuity of pj,: S, = E and com-
pletes the proof.

Finally, we note that the pseudo -barrelled spaces have the following
properties:

(2.23) A direct sum and the inductive-limit (cf. [13] for definitions) of
pseudo - barrelled spaces are pseudo -barrelled.

(2.24) A closed linear subspace of a pseudo -barrelled space need not be
pseudo - barrelled.

3. Spaces with s- factorization property. In the preceding two sections we
considered locally convex spaces with factorization property.

In the study of dilations of operator valued functions in vector spaces
[6]-[9] we define a new subclass of the class of spaces with factorization

property.
(3.1) Definition. A locally convex space E has the s-factorization property

if for each inner product (-, ) defined on E, which is coordinatewise
continuous, the function E3x —(x, x) is continuous.

(3.2) Remark. From (3.1) and (1.2) it follows immediately that every space
with s-factorization property has the factorization property.

The next theorem is analogous to Theorem (1.7). Its proof is similar to
that of (1.7) and will be omitted.

(3.3) THEOREM. Let E be a complex locally convex space and E' its topological
dual. The following conditions are equivalent :

(i) E has the s-factorization property.

(i) For each positive mapping Re L(E, E’) the function E>x — (Rx) (x) is
continuous. _

(iti) For each positive mapping Re L(E, E’) there exist a Hilbert space H
and a continuous square root Te CL(E, H) of R, i.e, R = T’ T. Moreover, if H
is minimal (cf. (iii) in (1.7)), then H and T are unique up to unitary equivalence.

From Theorem (2.2) and (3.2) we know that the classes of pseudo -
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barrelled spaces and spaces with s -factorization property are both contained
in the class of spaces with factorization property.

The space (so(Z), t) in (2.3) is not pseudo - barrelled. Obviously, it has
the s-factorization property.

Now, we give an example of a pseudo - barrelled space which does not
have the s-factorization property.

(34) Example. Let E be a complex non-separable Hilbert space with the
inner product (-, -). By 7 and t™ we denote the norm topology and the weak
one on E, respectively.

Define on E a locally convex topology 7, by the family of all semi-
norms

(3.3) p(x) =lIPx|l, xeE,

where P is an orthogonal projection onto a separable linear subspace of
(E, 7).

First, we prove that the space (E, 7,) does not have the s-factorization
property.

It is clear that T < 7, < t and that 7, # 7. Define a mapping R: (E, 1,)
- (E', B(E', E)) by

(3.6 (Rx)(y) =(y, x), x,yeE.

The mapping R is well defined, antilinear, and positive. Observe that the
topology on E’ of uniform convergence on the bounded subsets of (E, t,)
(the strong topology B(E’, E)) coincides with the norm topology t on E, since
every t™-bounded and, in particular, every 7, - bounded set is t - bounded (cf.
[13], § 20.11.7). Since 1, # t, a mapping R: (E, 7,) — (E', B(E', E)) defined in
(3.6) is not continuous and, by Theorem (3.3), (E, 7,) does not have the s-
factorization property. =

Now we prove that the space (E, 7,) is pseudo - barrelled.

First, we show that (E, 7,) is o-barrelled. The Husain definition of
o -barrelled space (cf. [11]) is equivalent to the following: a locally convex
space E is g -barrelled iff each lower semi - continuous semi-norm p(x) on E,
which is the least upper bound of at most countably many continuous semi -
norms on E, is continuous.

Let p(x) be a lower semi -continuous semi-norm on (E, t,) which is the
least upper bound of at most countably many continuous semi-norms p,(x)"
6n (E,t,), n=1, 2, ... For each n, there exist an orthogonal projection P,
onto a separable subspace E, < (E, 1) and a constant C, > 0 such that

(3.7 Pa(¥) < C,lIP,xll, x€E.
Denote by P, an orthogonal projection onto a separable subspace

Eo,= U E,<(E, 7).
1
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By (3.7) we have p,(x) < C,||Pox||, xe E. Hence each semi-norm p,(x) is
equal to O for every x in E4, the orthogonal complement of E,, and

(3.8) p(x) =0, xeE{.

By assumption, the semi-norm p(x) is lower semi-continuous on (E, 1,)
(thus on (E, 7)) and on a barrelled space (E,, 7). Hence, by (2.6), p(x) is t-
continuous on E,, i.e, there exists a constant C > 0 such that p(x) < C||x]|,
xeE,. Hence, by (3.8), p(x) < C||Pyx| for each x€E, ie, p(x) is 1,-
continuous on E, so the space (E, 1,) is o -barrelled. '

Now, we observe that the o -barrelled space (E, 7,) has a fundamental
sequence of bounded sets and, by (2.10), it is a ¥.# -space. Finally, by (2.11),
the space (E, t,) is pseudo - barrelled.

(3.9) THeOREM ([9], Proposition (3.5)). Each barrelled space E has the s-
factorization property.

(3.10) Remark. The intersection of the class of all pseudo - barrelled spaces
and the class of all spaces with s -factorization property contains the class of
all barrelled spaces (cf. (2.9) and (3.9)).

Final remarks. 1. It would be interesting to know what other classes
of locally convex spaces have the factorization and s -factorization properties.
It turns out also that some of subclasses of m-barrelled and, in particular, o -
barrelled spaces introduced by Husain in [11] have factorization properties.

2. In [6] it was shown that an analogue of B. Sz.-Nagy's dilation
theorem holds in a locally convex space E iff E has the factorization
property. Moreover, in [9] it was shown that an analogue of the Aronszajn -
Kolmogorov kernel theorem holds in a locally convex space E iff E has also
the factorization property.
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