VOL. XX 1969 FASC. 1

ON A THEOREM OF A. WEIL ON DERIVATIONS IN NUMBER FIELDS

 \mathbf{BY}

W. NARKIEWICZ (WROCŁAW)

Let L/K be a finite extension of an algebraic number field K, and let R_L and R_K be the rings of integers in L and K, respectively. Let I be an ideal in R_L . A mapping $D: R_L \to R_L/I$ is said to be an I-derivation over K if it satisfies the following conditions:

$$D(x+y) = D(x) + D(y), \quad D(xy) = xD(y) + yD(x)$$

and

$$D(x) = 0$$
 for $x \in R_K$.

An I-derivation D over K is said to be *essential* if its image contains at least one element which is not a zero-divisor.

In [2] A. Weil stated without proof the following

THEOREM. An ideal I divides the different of the extension L/K if and only if there exists an essential I-derivation over K.

A proof of this theorem was given by Kawada [1] with the use of p-adic considerations. The purpose of this note is to give a proof which does not use p-adicities.

Proof. Observe first that it suffices to prove the result for powers of prime ideals only. In fact, if $I=P_1^{a_1}\dots P_t^{a_t}$ and there exists an essential I-derivation over K, then there exist also $P_i^{a_i}$ -derivations over K which are essential, namely those defined by $D_i(x) \equiv D(x) \pmod{P_i^{a_i}}$, $i=1,2,\ldots,t$. Conversely, if $D_i(x)$, $i=1,2,\ldots,t$, are essential $P_i^{a_i}$ -derivations over K, and $y(x) \equiv D_i(x) \pmod{P_i^{a_i}}$, then putting $D(x) \equiv y(x) \pmod{I}$ one obtains an essential I-derivation over K.

So assume that D is an essential P^m -derivation over K. Observe first that $a-b \, \epsilon P^{m+1}$ implies D(a)=D(b). In fact, if $x \, \epsilon P^{m+1}$ and $t \, \epsilon P \setminus P^2$, then $x=t^{m+1}A/B$ with A, $B \, \epsilon R_L$ and $B \, \epsilon P$, whence $Bx=At^{m+1}$, which implies

$$BD(x) + xD(B) = (1+m)t^{m}D(t)A + t^{1+m}D(A),$$

and so BD(x) = 0, whence D(x) = 0. By the linearity of D our observation follows.

Now let a be chosen in such a way that P does not divide the conductor of $R_K[a]$, and every number from R_L is congruent to a number from $R_K[a]$ (mod P^{m+1}). If $b \equiv V(a)$ (mod P^{m+1}), then D(b) = D(V(a)) = V'(a)D(a). Note that D(a) cannot be a zero-divisor as otherwise by the last equality we would infer that D(b) is a zero-divisor for every b, against our assumption. If now f(X) is the minimal polynomial for a over K, then from f(a) = 0 we easily obtain f'(a)D(a) = 0, thus $f'(a) \equiv 0 \pmod{P^m}$, and so P^m divides the different of the extension L/K.

To prove the converse implication assume that P^m divides the different, and choose $a \in R_L$ in such a way that P does not divide the conductor f of $R_K[a]$. Let $b \in f$, $b \notin P$. Let V(X) be a polynomial over R_K such that V(a) = b, and define c as the residue class (mod P^m) satisfying $cV(a) \equiv 1 \pmod{P^m}$. Every number from R_L can be put in the form

$$x = F(a)/V(a)$$

with $F(X) \in R_K[X]$. We define now the mapping $D: R_L \to R_L/P^m$ by means of

$$D(x) \equiv (F'(a) V(a) - F(a) V'(a)) c^2 \pmod{P^m}.$$

This is well-defined, as $F(a)/V(a) = F_1(a)/V(a)$ easily implies the equality $F'(a) \equiv F'_1(a) \pmod{p^m}$.

The linearity of D is evident, the equality D(xy) = xD(y) + yD(x) follows by a simple calculation. Moreover,

$$D(a) = D(aV(a)/V(a)) \equiv ((V(a) + aV'(a))V(a) - aV(a)V'(a))c^2$$
 $\equiv 1 \pmod{P^m}$

and so Im D contains 1. Finally, D(x) = 0 for $x \in R_K$, whence D is an essential P^m -derivation over K, as needed.

REFERENCES

- [1] Y. Kawada, On the derivations in number fields, Annals of Mathematics 54 (1951), p. 302-314.
- [2] A. Weil, Differentiation in algebraic number-fields, Bulletin of the American Mathematical Society 49 (1943), p. 41.

INSTITUTE OF MATHEMATICS OF THE WROCŁAW UNIVERSITY

Recu par la Rédaction le 14.11.1967