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On typical-real functions
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Abstract. In [13] investigations into the family T, @ > 0, of the functions
fi2) = z+ayz*+..., a,=8,, n=273,..,

analytical in the disc |z| < 1, and such that
Re {a(1-23) f'(z2)+(1 —a)(1—2%) f (z)/z} > O for |z| < ]

have been undertaken. T, is the class of typically-real functions, 7, is the class of functions
convex in the direction of the imaginary axis. Moreover, T, < T for all « > 0.

In the present paper some further properties of the classes T, « > 0, have been
obtained. In particular, interrelations between the families T, and T,, a > 0, have been
pointed out.

1. Let Hy denote the family of all functions
(1) f@=z+) a2, a,=a, n=23,..,
n=2

analytical in the disc K = K,, where K, = {z: |z| < r}.

The geometrical properties of certain subclasses of the family Hp have
already been investigated by many authors. The most interesting properties
seem to be those of T-class of typically-real functions [11], of Sg-class of
univalent functions [5], and of Cg-class of the functions convex in the
direction of the imaginary axis [10]. Obviously Cx =« Sg < T< Hp. It is
also known that a function of the form (1) belongs to T or Cy if and
only if the conditions

@ Re {(1-2%)z"! f(z)} > O
or
3 Re {(1-23) f'(2)} > O

respectively, hold in K.
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In [13], a method employing (2)«3), and permitting simultaneous in-
vestigation of the classes T and Cp has been worked out (cf. [8]). Let
T,, a = 0 — arbitrary fixed, be the family of all functions of the form (1)
satisfying in the disc K the condition

C)) ReJ(a,z,f) > 0,
where
(5) J@,z,f) =a(1-2%) f(2)+(1—a)(1=23)z" ' f (2).

It is immediately seen from (1)«(5) that T, = T, T, = Cg. Moreover,

feT,,a >0, if and only if f is a special solution of the differential
equation

6) azf'(z2)+(1—a) f(z) = F(z), zeK, FeT.

From equation (6), and from (4), (5) the following theorems can be
obtained [13]:

THEOREM 1. The function fe T,,a > 0, if and only if

1 1
) fz) = ?jt_z“”F(tz)dt, zek,
(M)
where FeT.
THEOREM 2. If 0 < a; < «a,, then
@®) L,< T,

CoroLLARY 1. Every function feT,,a > 0, is typically-real.

COROLLARY 2. Any function fe€ T,,a = 1, is univalent and convex in the
direction of the imaginary axis (with real coefficients).
In the present paper we undertake further investigations into the family

T,,a = 0. Special emphasis will be put on interrelations between the classes
T and T;,a > 0.

2. First, let us consider the “limit” cases: @ = +00,a = 0%.
It follows from (4)-(5) that the identity function belongs to each family
T,,a = 0. Moreover, from (7), for each function feT,,a > 0,

) f(2)—-z = %}t”“'z(F(Zt)-—tz)dt, zek,
0

FeT. Since in the family T the following estimations are valid [11]:
(10) la,l <n, n=2,3,..,

from (9) we obtain: for any ¢ > 0 and re(0, 1) there is o’ such that for
all @ > «' and for each function f € T,, the condition

(11) |f(z)—z| <e for zeKk,
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holds. Thus, when « increases infinitely, the classes 7, are ‘“contracting”
(cf. Theorem 2, (8)) to the set T,, whose only element is the identity
function.

From Theorem 1 it also follows that for each function feT,,0 <a < 1,
there exists a function Fe T such that in the disc K

1
(12) f()=F(2) = IL_aF(z)—-%a g 181 2 F (t2)dt .

Making use of (12) and (10) we infer that in every disc K,,0<r <1,
the difference f(z)— F(z) is arbitrarily small, provided that « is sufficiently
close to zero.

3. We shall now investigate the problem contrary in a sense to that
solved in Corollary 1. Let feT. Put

a=oa,=sup{f: feT;, B> 0}.

The function f will be called a-typically-real. We shall then write fe T(a)
(cf. [7]). Obviously for every feT,0 < a < + 0.

Observe that from Theorem 2 and (4)(5) it follows that if fe T(a),
then for all 0 < f < « and ze K

Re J(B,z,f) > 0.
Passing to the limit with § — a~ we obtain

Re J(a,z, f) = 0.

Since ReJ is harmonic in K and J(«,0, f) = 1, from the maximum
principle for harmonic functions we get (4). Thus f e T;. Hence

THEOREM 3. The function f belongs to T(x),0 < a < + 00, if and only
if feT, for every Be<0,a) and f¢ Ty for B > a.

The function f is in T(4+ o) if and only if feT, for every o = 0.

CoroLLary 3. T= | T(®.

2e{0,+ o)

Also, from (11), T(+ ) = T, .

Consider the functions f,(z) = z(1+2)72, f,(z) = z(1+2)"!,ze K. Di-
rectly from the definition of the class T, and Theorem 3 it follows that
f1eT, f1¢ T,,a > 0. Thus f; € T(0). Analogously, f,e T(1). Therefore the
families T (0), T (1) are not empty. Moreover, from Theorem 3 we get

CorOLLARY 4. For every ae {0, + ), T(x) # Q.
Indeed, it is enough to investigate the case a e (0, +0). Let

= 1 2
Li(@)=z+ 30+a) 2%, zeK.

4 — Annales Pol. Mathematici XL. 2
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It can be seen that the function satisfies (6), where F(z) = z+422. Since
FeT, f,eT, for every a > 0.

Observe that functions of the form F(z) = z+az?, ze K, a = a, are
typically-real if and only if —} < a < }. Hence and from (6) f,¢ T, for
any B > a. Thus for every a e {0, +©), f€ T («).

4. We shall now consider some special cases. Let
(13) Fiz; ) =z(1-21z+2z%)"!, :zeK,-1<1<1.

Clearly, for every admissible 7, Fe T.
For an arbitrary parameter te (—1, 1) let us define in K the functions

1 1
(14) f@z;t,a) = ;jt”"‘zl"(zt; 1)dt, when a > 0,
0

(15) fz;7,0) = F(z; 7).

By (12), definition (15) is a natural consequence of (14).
From (13) and Theorem 1 we get
COROLLARY 5. For any a 20 and -1 <t<1

(16) fizt,a)eT,

We shall prove a stronger result. To this aim, denote by S% — Si
the subclass of starlike functions, [1] (with real coefficients). Clearly
F(z;1)e S§.

The following theorem holds true:

THEOREM 4. For any function Fe S§ and every 0 < a < 1 the function
f defined by (7) belongs to S§.

Proof (cf. [9]). Let 0 <a < 1,FeSk, and G(z) = z(F(z)/z)",z€ K.
Then Re {zG'(z)G"'(z)} > 1—a,z€K.
Put

H(z)=[ IG”‘(C) d(;] zek.

From the properties of the function G we obtain H(0) = H'(0)—1 = 0,
H(z)-H'(z) # 0 for 0 < |z| < 1, and

H'(z) zH" (2)
Re{(l— a) HG) +a(1+ HQ) )} >1—-a, zeKk.

zH' (2)
Thus, [12], Re{ 30

functions G and H we have

H(z) = z(f(z))a, zekK,

¥4

} > 1—a in K. From (7) and the definitions of the
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and consequently Re {zf’(z)/f (z)} > 0,z€ K. Hence f is a starlike function.
Moreover, it follows from (7) that f is of form (1), and thus f e Sg.
From Theorem 4 we obtain an extension of Corollary 2.

CoROLLARY 6. For any a€(0, 1) and every function Fe Sk function (7)
is univalent.

The following question remains open: Is the respective function (7) uni-
valent for every ae(0, 1) and any Fe Sg?

Let S, = T,-Sg, « = 0. Obviously Sy =Sz, S, =T, for « > 1, and
S:.c T, for 0 < a < 1. Also from Theorem 4, we get

CoRrOLLARY 7. For any a 2 0, -1 <7< 1,

f(z;T,2)€S,.

The question arises whether S, # T,,0 < a < 1. Consider the functions

1+2z?
FO(Z) = Z—('I—_ZT)Z, ZGK,
1 1
(17) fo2) = ?jt‘z“/"Fo(zt)dt, zeK,0<a<1.
0

Each family T, being convex, from (13)-(16) it follows that F,e Ty, fy € T,
Moreover, F,¢ Sz. We are going to show that f,¢S,. Indeed, for re (0, 1)

1-r? ir 1 1—r2¢?
Fo(ir) = ir ———-, ir)=— f¢t'* ' ————dt
olin) = ir > ol = - (1+7202F
It can easily be seen that for each fixed a€(0, 1) the equation
1-r2 1-a * 1-r2¢?
18 = gt
(18) (1+4r2)? a ‘[ (1472 t“)2

has got one solution in the interval (0, 1). Denote it by r,. Thus

Fo(iry) = (1—a) fo (irs).
Therefore from (6)

fo(ir) = 0.
This shows that f, is not univalent in K, ie.
S$;# T, 0<a<l.
From (18) it follows that r = r, satisfies the equation

(2n+1)2

(19) 1+Z( 1y —— " 2= .

Thus in the limit case we have
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Observe that r, is the radius of conformity (univalency) of the class T
(see for instance [15]), r;, =1 and T, = §,. The above results allow to
formulate the following hypothesis: for every a€(0, 1) the radius of con-
formity of the family T, is equal to the solution r, €(0, 1) of equation (19).

5. Let M denote the family of functions u defined on the interval
1

{—1,1), non-decreasing and normed by the condition [ du(z) = 1. Thus
-1

M is the set of probabilistic measures on the segment (—1, 1).

From Theorem 1, the known structural formula in the family T, [6],
and Fubini’s theorem one obtains a structural formula for the class
T.,a > 0, [13]. Summing up the basic properties of the family 7, we get

THEOREM 5. For an arbitrary fixed a,x > 0, the following conditions
are equivalent:

@ fel;

(b) there is only one function FeT such that f is a special solution
of the differential equation (6);

(c) there is only one function Fe T such that f satisfies (7);
(d) there is only one function ue M such that

1
(20) f@)= _fl ST, a)du(r), zeK,

where f(z; t,a) is defined by (13)-(14).

Obviously, from (12)(15) it follows that in the limit case a = 0,
(20) reduces to the structural formula in the family T.

From (d) and Brickman’s theorem, [3], one immediately obtains the
set Er_ of extremal points of the family T:

(21) Er,={f(z;7,0: =1 <1< 1},
where f(z;t,a) are defined in (13)H15).

Let co A stand for the closed convex hull of a set A. It is known that
coSg = T, [3). Since (cf. [13]) the clas T, is convex and compact, and
S,=T,a>1, thus co S, = T, for « > 1. We shall prove

THEOREM 6. For every a€(0, 1)

(22) oS, =T,.

Proof. From the properties of the classes S, and T, we have

c0S,ccoT, =T,.

On the other hand, by Corollary 7 and (21) we have

ETa cS,.
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Thus, by Krein-Milman’s theorem (cf. [14], p. 172), we get T, = co Er,

< co §,, which completes the proof.
Thus (22) holds true for every a > 0.

6. Let V,(2), n>2, a >0, be a region of values of the system
(ay, aa, ..., a,) of coeflicients of functions of the class T,. The set V,(0) is
known. It is a linear image of a respective region of values of the system
of coefficients of the Carathéodory functions with real coefficients (P(z)
=(1-z%)F(2)/z, ze K, FeT). Directly from (d) and the Carathéodory
theorem, [4], we obtain V,(a) for every a > 0, [13]. From the properties
of the set Vi(a) we get the following sharp estimations of Golusin’s
functional:

CoroLLARY 8. If feT,, a > 0, then
32a+1)7! or B> 0,
(23)24) ay—pa: < { ( )_ _ for B
3Qa+1)"'—-4(1+)"% for B<O.

CoroLLARY 9. If feT,,a > 0, then

2

3Qa+1)"'—4B(14+a)"% for B = (;I;l ,
(2526) a3—pa; > f 2
—(1420)! for p < U+

( 1420

In the case of estimations (24)(26) the function f(z; +1,a) or f(z; 0; )
is an extremal function. From Corollary 7 it follows that the estimations
are sharp also in the class S,,0 < a < 1.

The equality sign in (23) takes place for function (17), because

23+ ..., zeKk.

Jo€) = 2 0

As known, f,¢S, for 0 € a < 1.

7. From general properties of the classes of functions defined by
structural formulas (see e.g. [2]) and from (d) it follows, [13], that the
region D of the values of f(z), f€T,, is the convex hull of the curve

w=f(z;t,9) —1<1<1 (zeK,const).
Moreover,

CoroLLARY 10. If ®(w) is a given real continuous function in D* > D,
then max @(f (2)) is attained only by the functions

f@) =X, 0)+(1-4)f(z1,,q),
where A€<0,1),1,,1,e(~1,1).



158 Z.J. Jakubowski

Finally, we shall investigate one more consequence of the structural
formula [6]. To this aim; consider the family B of the (Carathéodory)
functions p analytical in K and such that p(0) = 1, Re p(z) > O, for ze K.
As known, [4], the region of the values of p(z), peB, |z] =r is the

disc K (go, o), with the middle point ¢, = (1+r?)(1—r?)"! and the radius
ro = 2r(1—r?)~1.
Let
gw) = aw?+(1—a)w, weK(gg, 7o), a = 0.

Then for a > 0 and re(0, 1) we have

Reg(go+7oe") = v(cost), te<0,2n),

where
v(x) = 20rd x?+ro(2ugo +1—a) x+a (@2 —r3)+(1—a)g,.
Thus
min v(x) = {v(— 1), when Xo < —1,
-1<x<1 * (v(xe), when —1 < x5 < O,
where

Xo = —[1+a+(3a—1)r*]/8ar.

Consequently we obtain

1—
T 1+(1-2a)r), when 0<r<r,(a),
(1+r)?
. n
(27)  min Reg(go+roe) = u(o, %)
m, when ry (Cl) <r<l1,

where
1+«
r a) = 3
1@ da+ /13> —2u+1

(28) u(e, y) = T2 -2a—1)y*—2(11a*+2a—1) y— (a? —6a+1).

Thus from the form of the function ¢ and from (27) we obtain

(11.::2 (1+(1—2a)r), when 0 <r <r (),
(29) min Regq(w) = 2
wek@oro) _uln,r) when ry(a) <r <1
8a(l1—r*) ' ‘
Put

h 1+(2\/5—3)a 1/2
(30) r(@) ={ (1+(2\/5—1)a) for 0 <« < /242,

Qa—1)"" for /2+2 < a.
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From (29), (28) and (30) we infer that for any « > 0 and any re {0, r(a)),
Reg(w) is positive in the set K(go,r), 8o = (1-r)(1-r*)"1,
ro=2r(1—=r*)"'. Il r=r(a), then there is t,€<0,2n) such that
Re g(go+roe'® = 0.

We have just shown:

LEMMA. For every function pe B and any fixed o > 0 we have
(31 Re {ap?(z2)+(1-0)p(2)} >0 for z€ K,q,
where r(a) is defined by (30). Property (31) in not valid in any disc K, with
a radius r > r(a).

Let f be an arbitrary function in the family 7. Then from (5) and
(20) we get

1

J@,z, f) = _Il (@p*(z; )+ (1 —a)p(z; 7))du(x), zeK,

where
1-z2

m, ZEK,TE(-I,I).

p(z; 1) =
As p(z; 1) ‘B, we obtain, by Lemma,
(32) ReJ(a,z, f) >0, zeK,,,

for any function feT.
The function f;(z) = z(1—z)"2 is in T, and

J(, z, f3) = a(l+z)2+(l—a)(l+z).

1-2 1-2

Thus property (32) is not preserved in any disc K, with a radius r > r(a).

Let R,(T) stand for the radius of the greatest disc K, in which each
function fe T satisfies condition (4)-(5) in the definition of the family 7.
Then we have

THEOREM 7. For any a > 0
R,(T) = r(®),

where r(a) is defined in (30).

Obviously Ro(T) = 1. Since R (T) = \/2—1 = ry (cf. (19)), each func-
tion feT is not only univalent in the disc K, but also convex in the
direction of the imaginary axis. It can also easily be seen that R,(T)— 0
when 2 — = .
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