ANNALES POLONICI MATHEMATICI XLVIII (1988)

Relèvements horizontaux de tenseurs de type (1, 1)au fibré $E = TM \otimes T^*M$

pat Jacek Gancarzewicz (Kraków) et Naureddine Rahmani (Oran)

0. Introduction. Soient V une connexion linéaire sur M et $E = TM \otimes T^*M$ le fibré des tenseurs de type (1, 1). V définit une distribution H sur E appelée distribution horizontal. Cette distribution définit le relèvement horizontal des champs de vecteurs (voir § 2).

Let but de ce travail est donner des constructions qui à un tenseur t de type (1, 1) sur M font associer un tenseur \tilde{t} de type (1, 1) sur E vérifiant la condition $\tilde{t}(X^H) = (tX)^H$, où X^H désigne le relèvement horizontal de X. On propose dans ce travail deux constructions appelées relèvements horizontaux de tenseurs.

Dans \S 1 on introduit une famille de fonctions sur E jouant une rôle importante dans ce travail car des champs de vecteurs sur E sont caractérisés par leurs actions sur les fonctions de la famille introduite. Ensuite on caractérise des champs de vecteurs verticaux sur E.

Dans § 2 on étudie le relèvement horizontal des champs de vecteurs et ses propriétés.

Dans § 3 on définit deux relèvements horizontaux de tenseurs de type (1, 1) au fibré $E = TM \otimes T^*M$ et on étudie ses propriétés. Ensuite on utilise ces constructions pour prolonger des structure géométriques définies sur M par des tenseurs de type (1, 1) et on discute l'integrabilité des structures prolongées.

Les propriétés des relèvements horizontaux au fibré $E = TM \otimes T^*M$ sont très analogues aux propriétés des relèvements au fibré tangent (Yano et Ishihara [4], [5]) et au fibré contangent (Yano et Patterson [6]).

Les résultats obtenus dans ce travail pour le fibré $E = TM \otimes T^*M$ peuvent être généralisés au fibré

$$E = \bigotimes^p TM \otimes \bigotimes^q T^* M$$

(le fibré des tenseurs de type (p, q)). Ces généralisations seront publiées dans un travail séparé [3].

 0° . Notations. Soient M une variété et π : $E = TM \otimes T^*M \to M$ le fibré des teneseurs de type (1, 1) avec sa projection. Si (U, x^i) est une carte sur M, alors on définit la carte induite $(\pi^{-1}(U), x^i, y^i_j)$ sur E par les formules

$$x^{i}(y) = x^{i}(\pi(y)), \quad y = y_{i}^{i}(y) dx^{j} \otimes \hat{c}_{i},$$

où $y \in \pi^{-1}(U)$, $\partial_1, \ldots, \partial_n$ désigne le repère canonique sur U défini par la carte (U, x^i) et dx^1, \ldots, dx^n désigne le corepère dual. On note par

$$\partial_i = \partial/\partial x^i, \quad \partial_i^i = \partial/\partial y^i,$$

le repère canonique sur $\pi^{-1}(U)$ défini par la carte induite.

1. Des champs de vecteurs sur E. Soit s une section de $E = TM \otimes T^*M$. On définit la fonction \tilde{s} sur E par la formule

$$\tilde{s}(y) = \operatorname{trace} s_{v} \circ y,$$

où les éléments s_y et y de la fibre $E_{\pi(y)} = T_{\pi(y)} M \otimes T_{\pi(y)}^* M$ sont considérées comme des applications linéaires $T_{\pi(y)} M \to T_{\pi(y)} M$. Utilisant une carte induite on peut facilement vérifier

(1.2)
$$\tilde{s}(y) = s_i^i(\pi(y))y_i^j,$$

où s_j^i désignent les coordonnées de s par rapport à (U, x^i) . D'où, la fonction \tilde{s} est de classe C^{∞} sur E. Ces fonctions joueront une rôle importante parce qu'on a la proposition suivante.

Proposition 1.1. Si \tilde{X} et \tilde{Y} son deux champs de vecteurs de classe C^{∞} sur E tels que pour toute section s de E on a $\tilde{X}(\tilde{s}) = \tilde{Y}(\tilde{s})$, alors $\tilde{X} = \tilde{Y}$.

Démonstration. Il suffit de vérifier que l'égalité $\tilde{X}(\tilde{s}) = 0$ pour toute section s implique $\tilde{X} = 0$. Soient (U, x^i) une carte sur M et

$$\tilde{X} = \tilde{X}^i \, \partial_i + \tilde{X}^i_j \, \partial_i^j.$$

D'après (1.2) on a

$$\tilde{X}^k(\hat{c}_k s_i^i) y_i^j + \tilde{X}_i^j s_i^j = 0$$

pour toutes fonctions s_j^i . D'où $\tilde{X}^k = \tilde{X}_j^i = 0$, c'est-à-dire $\tilde{X} = 0$.

Un champ de vecteurs \tilde{X} sur E s'appelle projetable sur M s'il existe un champ de vecteurs X sur M tel que

$$d\pi \circ X = X \circ \pi$$

où $d\pi$: $TE \to TM$ désigne l'application induite par π : $E \to M$. Le champ de vecteurs X est uniquement déterminé par \widetilde{X} et X s'appelle la projection de \widetilde{X} . L'ensemble de tous les champs de vecteurs sur E projetables sur M est une algèbre de Lie. On a la proposition suivante.

Proposition 1.2. Soient X un champ de vecteurs sur M et \tilde{X} un champ de

vecteurs sur E. \tilde{X} est projetable sur M et X est sa projection si et seulement si pour toute fonction f de classe C^{∞} sur M on a

$$\tilde{X}(f^{V}) = (Xf)^{V},$$

où $f^V = f \circ \pi$ est le relèvement vertical de f.

Démonstration. Soient (U, x^i) une carte sur M et

$$X = X^i \partial_i, \quad \tilde{X} = \tilde{X}^i \partial_i + \tilde{X}^i_i \partial_i^j.$$

D'après la définition, \tilde{X} est projectable sur M si et seulement si les fonctions $\tilde{X}^{i}(y)$ ne dependent que de $\pi(y)$ et X est la projection de \tilde{X} si et seulement si $X^{i}(\pi(y)) = \tilde{X}(\pi(y))$, d'où la proposition.

La proposition précédente implique

Proposition 1.3. Soit \tilde{X} un champ de vecteurs sur E. \tilde{X} est un champ de vecteurs verticaux si et seulement si $\tilde{X}(f^V) = 0$ pour toute fonction f sur M.

Démonstration. Un champ de vecteurs verticaux est projectable et sa projection est zéro.

Soit y un point de E. Comme la fibre $E_{\pi(y)}$ est un espace vectoriel, on a l'isomorphisme canonique

$$\psi_{y} \colon V_{y} E = T_{y}(E_{\pi(y)}) \to E_{\pi(y)}.$$

Si t est une section de E, alors on peut définir un champ de vecteurs t^V sur E par la formule

(1.4)
$$t^{\nu}(y) = \psi_{y}^{-1}(t_{y}).$$

 t^{ν} est un champ de vecteurs verticaux sur E. t^{ν} s'appelle relèvement vertical de s. L'expression locale de ce champ est

$$t^{V}(y) = t_i^i \, \partial_i^i.$$

D'après (1.5) et (1.2) on a

Proposition 1.4. Si s et t sont deux sections de E, alors on a

$$t^{V}(\tilde{s}) = (\text{trace } ts)^{V}$$
.

D'après la proposition 1.3 on a

Proposition 1.5. Si t est une section de E et f est une fonction sur M, alors $t^{V}(f^{V}) = 0$.

Utilisant les propositions 1.4, 1.5 et 1.1 on peut facilement démontrer Proposition 1.6. Si t, t' sont des sections de E et f est une fonction sur M, alors

$$(t+t')^V = t^V + t'^V$$
, $(ft)^V = f^V t^V$, $[t^V, t'^V] = 0$,

 $où f^V = f \circ \pi.$

On construit encore un champ de vecteurs verticaux sur E utilisant la proposition suivante.

PROPOSITION 1.7. Si t est une section de E, alors il existe un et un seul champ de vecteurs t sur E tel que pour toute section s de E on a

$$t^{\sqcap}(\overline{s}) = ts.$$

Démonstration. L'unicité de t^{\square} est évidente d'après la proposition 1.1. Pour démontrer l'existence de t^{\square} il suffit de définir un champ de vecteurs V sur $E \mid U = \pi^{-1}(U)$

$$(1.7) V = t_i^k y_k^i \partial_i^j,$$

où (U, x^i) est une carte sur M. D'après (1.2) et (1.7) on a

$$V(\bar{s}) = \tilde{ts}$$

pour toute section s de E|U. Si (U, x^i) et $(U', x^{i'})$ sont deux cartes sur M, alors les champs de vecteurs V et V' définis par (1.7) respectivement sur E|U et E|U' vérifient la condition

$$V(\vec{s}) = \widetilde{ts} = V'(\vec{s})$$

pour toute section s de $E|(U \cap U')$. D'après la proposition 1.1 les champs de vecteurs V et V' coı̈ncident sur $E|(U \cap U')$. D'où il existe un champ (global) de vecteurs sur E vérifiant la condition (1.6).

De cette démonstration il vient que t^{\square} est un champ de vecteurs verticaux sur E. Alors d'après la proposition 1.3 on a

PROPOSITION 1.8. Si t est une section de E et f est une fonction sur M, alors $t^{\square}(f^{\nu}) = 0$, où $f^{\nu} = f \circ \pi$.

2. Relèvement horizontal des champs de vecteurs au fibré E. Soit V une connexion linéaire sur M. Alors pour tout point y de $E = TM \otimes T^*M$, V définit un sous-espace H_y de T_yE appelé espace horizontal. Si $\pi \colon E \to M$ désigne la projection, alors $d_y \pi \mid H_y \colon H_y \to T_{\pi(y)} M$ est un isomorphisme. D'où, si X est un champ de vecteurs sur M, on peut définir le champ de vecteurs X^H sur E par la formule

(2.1)
$$X^{H}(y) = (d_{y}\pi | H_{y})^{-1}(X_{\pi(y)}), \quad y \in E.$$

 X^H est appelé relèvement horizontal de X à E. De la définition on obtient immediatement

PROPOSITION 2.1. Si X, Y sont des champs de vecteurs sur M et f est une fonction sur M, alors on a

$$(X+Y)^H = X^H + Y^H, \quad (fH)^V = f^V X^H.$$

Utilisant la définition de la distribution horizontal on peut trouver l'expression locale de X^H . On a (voir [3])

(2.2)
$$X^{H} = X^{i} \partial_{i} + X^{i} \left(\Gamma^{k}_{ip} y^{q}_{k} - \Gamma^{q}_{ik} y^{k}_{p} \right) \partial^{p}_{q},$$

où $X = X^i \, \hat{c}_i$ et Γ_{ip}^k sont les symboles de Christoffel de V.

PROPOSITION 2.2. Si X est un champ de vecteurs sur M, s est une section de E et f est une fonction sur M, alors on a

$$X^H(\vec{s}) = \widetilde{V_X s}, \quad X^H(f^V) = (Xf)^V.$$

Démonstration. Pour vérifier la première formule on utilise (2.2) et (1.2). La deuxième formule est une consequence de la proposition 1.3 et du fait que X^n est projetable sur M et X est sa projection.

Utilisant les propositions 2.2, 1.4, 1.7 et 1.1 on obtient

Proposition 2.3. Si X, Y sont des champs de vecteurs sur M et t est une section de E, alors on a

$$[X^{H}, Y^{H}] = [X, Y]^{H} + (R(X, Y))^{\square},$$

$$[X^{H}, t^{V}] = (V_{X}t)^{V},$$

$$[X^{H}, t^{\square}] = (V_{X}t)^{\square},$$

où R(X, Y) désigne la transformation de courbure (R(X, Y)) est une section de E pour des champs fixés X et Y).

Démonstration. On ne vérifie que la première formule car la vérification des autres est entièrement analogue. Soit s une section de E. On a

$$[X^{H}, Y^{H}](\tilde{s}) = X^{H}(Y^{H}\tilde{s}) - Y^{H}(X^{H}\tilde{s})$$

$$= \widetilde{V_{X}(V_{Y}s)} - \widetilde{V_{Y}(V_{X}s)}$$

$$= [X, Y]^{H}(\tilde{s}) + (R(X, Y))^{\square}(\tilde{s}),$$

d'où, d'après la proposition 1.1,

$$[X^{H}, Y^{H}] = [X, Y]^{H} + (R(X, Y))^{\square}.$$

3. Relèvements horizontaux de tenseurs de type (1, 1). Soit t un tenseur de type (1, 1) sur M (c'est-à-dire, t est une section de E). On définit deux tenseurs t^{HI} et t^{HII} de type (1, 1) sur E par les formules

(3.1)
$$t^{HI}(X^H) = t^{HII}(X^H) = (tX)^H,$$

(3.2)
$$t^{HI}(s^{V}) = (ts)^{V}, \quad t^{HII}(s^{V}) = (st)^{V},$$

où X est un champ de vecteurs sur M et s est une section de E. Les formules (3.1) et (3.2) déterminent les tenseurs t^{HI} et t^{HII} de la manière unique. t^{HI} et

 t^{HII} sont appelés relèvements horizontaux de t à E respectivement de type 1 et de type 2. Utilisant les formules (3.1), (3.2), (2.2) et (1.5) on peut trouver les expressions locales pour des tenseurs t^{HI} et t^{HII} . On a la proposition suivante.

Proposition 3.1. Si t est un tenseur de type (1, 1) sur M et $t(\hat{c}_i) = t_i^j \hat{c}_j$, alors on a

$$\begin{split} t^{HI}(\partial_{i}) &= t_{i}^{j} \partial_{j} + \{t_{i}^{p}(\Gamma_{pk}^{r} y_{s}^{k} - \Gamma_{ps}^{k} y_{k}^{r}) - t_{p}^{r}(\Gamma_{ik}^{p} y_{s}^{k} - \Gamma_{is}^{k} y_{k}^{p})\} \hat{c}_{r}^{s}, \\ t^{HI}(\partial_{i}^{j}) &= t_{i}^{s} \hat{c}_{s}^{j}, \\ t^{HII}(\partial_{i}) &= t_{i}^{j} \hat{c}_{j} + \{t_{i}^{p}(\Gamma_{pk}^{r} y_{s}^{k} - \Gamma_{ps}^{k} y_{k}^{p}) - t_{s}^{p}(\Gamma_{ik}^{r} y_{p}^{k} - \Gamma_{ip}^{k} y_{k}^{r})\} \hat{c}_{r}^{s}, \\ t^{HII}(\partial_{i}^{j}) &= t_{s}^{j} \hat{c}_{s}^{s}. \end{split}$$

On a des propriétés suivantes des relèvements horizontaux de tenseurs à E.

Proposition 3.2. Si t et s sont deux tenseurs de type (1, 1) sur M et f est une fonction sur M, alors

$$(3.3) (t+s)^{HI} = t^{HI} + s^{HI},$$

$$(3.4) (t+s)^{HII} = t^{HII} + s^{HII},$$

$$(ft)^{HI} = f^{V} t^{HI}, \quad (ft)^{HII} = f^{V} t^{HII},$$

$$(3.6) (ts)^{HI} = t^{HI} s^{HI},$$

(3.7)
$$(ts+st)^{HII} = t^{HII} s^{HII} + s^{HII} t^{HII},$$

(3.8)
$$\delta^{HI} = \delta, \quad \delta^{HII} = \delta,$$

$$(3.9) (t^n)^{HI} = (t^{HI})^n,$$

$$(3.10) (t^n)^{HII} = (t^{HII})^n,$$

où δ désigne le tenseur d'identité.

Démonstration. Les égalités (3.3), (3.4), (3.6)–(3.8) sont des conséquences immédiates des définitions des tenseurs t^{HI} et t^{HII} . La formule (3.5) résulte des propositions 2.1 et 1.6. La formule (3.9) est une conséquence de (3.6). On vérifie la formule (3.10) par induction utilisant (3.7). En, on a

$$(t^{n+1})^{HII} = \frac{1}{2} (t^n t + t t^n)^{HII}$$

$$= \frac{1}{2} \{ (t^n)^{HII} t^{HII} + t^{HII} (t^n)^{HII} \}$$

$$= \frac{1}{2} \{ (t^{HII})^n t^{HII} + t^{HII} (t^{HII})^n \}$$

$$= (t^{HII})^{n+1}.$$

Les propriétés démontrées pour les relèvements horizontaux des tenseurs

au fibré $E = TM \otimes T^*M$ sont très analogues aux propriétés des relèvements horizontaux définis par Yano et Ishihara [5] dans le cas du fibré tangent et par Yano et Patterson [7] dans le cas du fibré cotangent. Le relèvement t^{HI} ressemble au relèvement au fibré tangent et le relèvement t^{HI} ressemble au relèvement au fibré contangent.

On peut utiliser les relèvements horizontaux à prolonger des structures géométriques de M au fibré E. On a la proposition suivante.

Proposition 3.3. Si P est un polynôme à coefficients réels (constants), alors pour tout tenseur t de type (1, 1) sur M on a

$$P(t^{HI}) = (Pt)^{HI}, \qquad P(t^{HII}) = (Pt)^{HII}.$$

En particulier, si t est une structure presque tangente (resp. presque complexe, f-structure, etc.) sur M, alors t^{HI} et t^{HII} sont des structures presques tangentes (resp. presques complexes, f-structures, etc.) sur E.

Pour étudier l'intégrabilité des structures relèvées on doit calculer des tenseurs de Nijenhuis de t^{HI} et t^{HII} . Pour faire ce calcul tout d'abord on introduit une opération γ utilisant la proposition suivante.

PROPOSITION 3.4. Si t et t' sont deux sections de E, alors il existe un et un seul champ de vecteurs $\gamma(t, t')$ sur E tel que pour toute section s de E on a

$$\gamma(t, t')(\tilde{s}) = \widetilde{tst'}$$
.

Démonstration. Le preuve est analogue à la démonstration de la proposition 1.7. Il suffit de définir $\gamma(t, t')$ par la formule

(3.11)
$$\gamma(t, t') = t_i^s y_s^k t_k^i \hat{c}_i^i.$$

 $\gamma(t, t')$ est un champ de vecteurs verticaux, en conséquence, $\gamma(t, t')(f^{\nu})$ = 0 pour toute fonction f sur M. D'après la proposition 3.4 on a

COROLLAIRE 3.5. $\gamma(t, \delta) = t^{-1}$.

On a aussi les propositions suivantes.

PROPOSITION 3.6. L'application

$$(t,t') \rightarrow \gamma(t,t')$$

est bilinéaire et si f est une fonction sur M, alors on a

$$\gamma(ft, t') = \gamma(t, ft') = f^{V} \gamma(t, t').$$

La démonstration est triviale.

Utilisant la proposition 3.1 et la formule (3.11) on obtient

Proposition 3.7. Si t et s sont des tenseurs de type (1, 1) sur M, alors on a

$$t^{HII}(s^{\square}) = \gamma(t, s), \quad t^{HII}(s^{\parallel}) = \gamma(s, t).$$

Utilisant les propositions précédentes on démontre les formules suivantes pour les tenseurs de Nijenhuis de t^{HI} et t^{HII} .

PROPOSITION 3.8. Si t, s, s' sont des tenseurs de type (1, 1) sur M et X, Y sont des champs de vecteurs sur M, alors

$$\begin{split} N_{tHI}(X^{H}, Y^{H}) &= \left(N_{t}(X, Y)\right)^{H} + \gamma \left(\delta, R(tX, tY)\right) + \\ &+ \gamma \left(t^{2}, R(X, Y)\right) - \gamma \left(t, R(tX, Y) + R(X, tY)\right), \\ N_{tHI}(X^{H}, s^{V}) &= \left(\nabla_{tX}ts - t\nabla_{X}ts\right)^{V}, \quad N_{tHI}(s^{V}, s^{V}) = 0, \\ N_{tHII}(X^{H}, Y^{H}) &= \left(N_{t}(X, Y)\right)^{H} + \left\{R(tX, tY) + t^{2}R(X, Y)\right\}^{\Box} - \\ &- \left\{t\left(R(tX, Y) + R(X, tY)\right)\right\}^{\Box}, \\ N_{tHII}(X^{H}, s^{V}) &= \left(s\nabla_{tX}t - s\nabla_{X}t - t\right)^{V}, \quad N_{tHII}(s^{V}, s'^{V}) = 0. \end{split}$$

Démonstration. Utilisant les formules (3.1) et (3.2), d'après la définition du tenseur de Nijenhuis on a

$$\begin{split} N_{t^{HI}}(X^{H}, Y^{H}) \\ &= \left[(tX)^{H}, (tY)^{H} \right] - t^{HI} \left[(tX)^{H}, Y^{H} \right] - t^{HI} \left[X^{H}, (tY)^{H} \right] + (t^{2})^{HI} \left[X^{H}, Y^{H} \right]. \end{split}$$

Utilisant les formules

$$[X^H, Y^H] = [X, Y]^H + (R(X, Y))^{\square}, \quad t^{HI}((R(X, Y))^{\square}) = \gamma(t, R(X, Y))$$

on obtient

$$N_{tHI}(X^{H}, Y^{H}) = [tX, tY]^{H} + (R(tX, tY))^{\square} - (t[tX, Y])^{H} - \gamma(t, R(tX, Y)) - (t[X, tY])^{H} - \gamma(t, R(X, tY)) + (t^{2}[X, Y])^{H} + \gamma(t^{2}, R(X, Y))$$

$$= (N_{t}(X, Y))^{H} + \gamma(\delta, R(tX, tY)) - (\tau(t, R(tX, Y)) + \gamma(t^{2}, R(X, Y))).$$

La vérification des autres formules est analogue.

Cette proposition nous permet de démontrer le théorème suivant.

Théorème 3.9. Si t est une structure kählerienne sur M compactible avec la connexion V, alors les structures presques complexes t^{HI} et t^{HII} sont integrables.

Démonstration. t est une structure kählerienne sur M compatible avec V si et seulement si

$$(3.12) N_t = 0,$$

$$(3.13) V_X t = 0,$$

(3.14)
$$R(tX, tY) = R(X, Y)$$

pour tous champs de vecteurs X, Y sur M. Remplaçant Y par -tY dans

(3.14) on obtient

(3.15)
$$R(tX, Y) = -R(X, tY).$$

La condition (3.13) implique d'après la proposition 3.8 que

$$N_{IHI}(X^{H}, s^{V}) = N_{IHII}(X^{H}, s^{V}) = 0.$$

Pour la structure presque complexe t d'après la proposition 3.9 on a

$$\begin{split} N_{tHI}(X^{H}, Y^{H}) &= \left(N_{t}(X, Y)\right)^{H} + \gamma \left(\delta, R(tX, tY) - R(X, Y)\right) \\ &= \gamma \left(t, R(tX, Y) + R(X, tY)\right), \\ N_{tHII}(X^{H}, Y^{H}) &= \left(N_{t}(X, Y)\right)^{H} + \left\{R(tX, tY) - R(X, Y)\right\}^{\Box} - \\ &- \left\{t \left(R(tX, Y) + R(X, tY)\right)\right\}^{\Box}, \end{split}$$

d'où d'après (3.12), (3.14) et (3.15) il vient

$$N_{HI}(X^{H}, Y^{H}) = N_{HII}(X^{H}, Y^{H}) = 0,$$

c'est-à-dire, les structures t^{HI} et t^{HII} sont intégrables.

Ces derniers résultats sont analogues à ceux obtenus par Yano, Ishihara et Patterson [5], [6], [7] dans les cas des fibrés tangents et cotangents.

Bibliographie

- [1] J. Gancarzewicz et N. Rahmani, Relèvement horizontal des connexion linéaires au fibré vectoriel associé avec le fibré principal repères linéaires, ce fasc., 291-295.
- [2] S. Kobayashi and N. Nomizu, Foundations of differential geometry, New York 1963.
- [3] N. Rahmani, Relèvement horizontal des tenseurs de type (1, 1) au fibré $TM \otimes T^*M$, thèse de magister, Université d'Oran, Oran 1983.
- [4] -, Relèvements horizontaux des tenseurs de type (1, 1) au fibré des tenseurs de type (p, q), sous presse.
- [5] K. Yano and S. Ishihara, Horizontal lifts from a manifold to its tangent bundle, J. Math. Mech. 16 (1967), 1015-1030.
- [6] -, -, Tangent and cotangent bundles, New York 1973.
- [7] K. Yano and E. Patterson, Horizontal lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan 16 (1967), 185-197.

INSTYTUT MATEMATYKI UNIWERSYTET JAGIELLOÑSKI KRAKÓW. POLOGNE and

UNIVERSITÉ D'ORAN (ES-SENIA) INSTITUT DE MATHÉMATIQUES ORAN, ALGÉRIE

Reçu par la Rédaction le 1985.12.31