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Abstract. Let u(t) be a solution of the problem
L()—Au(t)y=0 in Q, t>0,
u{t)y=0 on 908, t>0,
where 2 is a bounded domain in R” with a smooth boundary 4£2. Suppose
Y &|(u(0), p))* <E* foran s3>0
n=1
and
llg—u()ll <,

where (p,) are the orthonormal eigenfunctions of —4 in H{(@)~H*(f)) and (4,) are the
corresponding eigenvalues. Here ||+|| is the L,-norm. In the paper we construct, by truncated
eigenfunction expansion, an approximate solution u,(f), stable with respect to variations in g, such
that

llu () —u(@l < (1 +2)'2E' ~'e(log(E/e)) =", 0<1<1,
for small ¢ > 0 il s > 0 and for all & > 0 if s = 0. The paper also shows how error estimates can be

further improved by strengthening regularity conditions on u(0).

Consider the problem

m W ({t)—Au(t)=0 in £, t>0,
(2) u(t)=0 on 0Q, t >0,
(3) u(1) = g,

where © is a bounced domain in R” with a smooth boundary dQ, and g is
a given ~lement of L, = L,(£2). As is well known, this is an ill-posed problem.
Let u(t) be a solution of (1)—(2), i.e., a mapping t — u(t) continuous from ¢t > 0 to
L,, C* from t > 0 to H{(Q)n H*(Q), satisfying (1). In practice, u(1) is known
only approximately:

* On Icave from Ho Chi Minh City University.
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@) lg—u(ll <e (lI*|l = L,-norm),

and the problem is to find an approximate solution to the problem (1), (2), (4)
that is stable with respect to variations in g. The problem has been studied
extensively in recent years. In this note, we shall construct, by truncated
eigenfunction expansion, a stabilized approximate solution u,(t), and, by
imposing certain regularity conditions on u(0), we shall derive error estimates
for |ju(t)—u,(t)|]. Comparisons will be made with results in the current
literature.

Let (¢,) be the L,-orthonormal set of eigenfunctions of —4 in
HL{(R)nH?*(Q) with the corresponding set of eigenvalues

0<A, <4, <...
Then we have

THEOREM 1. Let u(t) be a solution of (1)-(2). Let (4) hold.
(i) Suppose

(5) i 25| (0), ¢,))* < E*  for some s 2 0.
nel
Let
N(e)
(6) u,(t) = Zl(g. @) @aeXP(4,(1—1)),
where

V)] N(e) = max {n: 2, < log(% (log g)-su)}

~s/2
(ifa, > log(-g (logfe:-) ), u,(t) is understood to be the null function). Then for
¢ > 0 sufficiently small, one has
(8) e ()= u@)l < (1+29*E* "¢t (log(Efe)) "2, 0<t<1.

(ii) Suppose
(9) Z I(u(O), (p,,)’zcxp(?_&ln) < E2 for ad = 0.

n=1

Let u,(t) be defined by (6) with N(e) now given by

1 E
(10) N(eg) = max{n. A, € mlog;}.

Then

(11) llu () —u(O)}  J2EQ M +Du+BIGTY - g gy <,
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Proof. We prove (i) only. We have

(1) 40 = T (4O, 0)0,exp(~ )
N() ©
= X (u(), o.) onexp(%(1-1) + _% “(0), ®,) @pexp(—4,1).

Hence, in view of (4)—(7) and Bessel's inequality,

N(e)
llu (t) —u(@? = Z lg—u(1), @,)|*exp(24,(1 1))
+ —;’H 1 (4(0), @,)exp(—22,1)

< llg—u(l)l*exp 24y (1 1)
+ AN+ 16XP(— 245y 41 8) D j-';T-|(u(0)» ‘Pn)l2
n=1

< e2exp(2Ane (1 — ) + E2AxG) + 1 €Xp(— 2An(y + 1. 1)
By (7)
exp(24ne (1 — 1)) < (E/e)** ~(log(E/e)) 5 77,
exp(—2Ane + 1 1) < (¢/E)* (log(E/e))*
and Aygy+1 > 3log(E/e) for € > 0 sufficiently small. Hence
llug(6) —u(@)l* < (1+29) E2 0> (log(E/e)) > ="

for ¢ > 0 sufficiently small. This proves (i). The proof of (ii), which follows
similar lines, is omitted.

Several remarks are in order, regarding Theorem 1 above. We take the
case s =0 in part (i), in which (5) reduces to

(5) @)l < E.

Under conditions (4) and (5'), Miller [7] using his modified quasireversibility
method gave a stabilized approximate solution u,(t) satisfying the error
estimate

(13) llup() —u()l < 26'E*7Y, 0<t<1.

Ewing, using the Sobolev equation, gave an approximate solution w, with the
error estimate [3]

4(1—1)E

————— 4 ¢E'! 0 1.
tzlog(E/a)+8 , <t<

(14) llu(t) —w, (D <
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Ang [1(a)] converted the problem into one involving an integral equation of
the first kind, and, by an appropriate regularization, gave a stabilized
approximate solution uy(f) with the error estimate

(15) llup () — (@l € 20'6'E*™, 0t <1,

where 0 <-a(g) < 1 is such that a(e)—1 as e—0.

The backward heat equation was considered in Lattes—Lions [6], using
the quasireversibility method, but the problem of approximation on 0 <t < 1
was not considered there. Other treatments of the backward heat equation can
be found in Colton and Wimp [2], Franklin [4], Gajewski and Zaccharias [5],
Payne [8]. In [1(b)], the nonlinear case was also considered.
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