VOL. XXXVI

1976

FASC. 2

UNIFORM CONVERGENCE OF LACUNARY FOURIER SERIES

BY

LEONEDE DE-MICHELE AND PAOLO M. SOARDI (MILANO)

1. A subset I of the integers Z is called a set of uniform convergence, or a UC set, if every Fourier series of the form

$$\sum_{n\in I} c_n e^{int},$$

which represents a continuous function, converges uniformly. In [1] an example was given of a UC set which is not a Sidon set, i.e. such that there exist uniformly convergent series of form (1) which are not absolutely convergent. In this note we exhibit another example of a UC set which is not Sidon, by showing that the union of a set as in [1] and a finite number of Hadamard sets is still a UC set. To prove this fact we use convolutions with the de la Vallée Poussin kernels instead of the Riesz polynomials considered in [1]. The question of whether the union of two UC sets is again a UC set remains open in general. We do not know the answer even in the case where one of the sets is a Sidon set. For subsets of the dual of the Cantor group, some partial results are contained in [3] where general properties of UC sets are also discussed.

2. Let n_s be a sequence of positive integers such that

$$\frac{n_{s+1}}{n_s} > 1 + \sqrt{3},$$

and let $E = \{n_i + n_j : i \neq j\}$. Let $E_l = \{m_j^{(l)}\}_{j=1}^{\infty}$ be sequences of positive integers such that $m_{j+1}^{(l)}/m_j^{(l)} \geqslant q > 1$ for some q and $l = 1, \ldots, M$. Finally, let

$$F = \bigcup_{l=1}^{M} E_{l}.$$

Then

THEOREM. $E \cup F$ is a UC set which is not a Sidon set.

Proof. Clearly, $E \cup F$ is not a Sidon set, since it contains infinite sets which are not Sidon (see [1]). Without loss of generality we may

suppose that, for some $p \in \mathbb{Z}$, $n_{s+1}/n_s \leq p$. Let h be a positive integer such that $q^h > p$. Then there are at most hM = A elements of F between $n_s + n_{s-1}$ and $n_{s+1} + n_s$. Indeed, let $m_i^{(l)}$ be the smallest element of E_l such that $m_j^{(l)} > n_s + n_{s-1}$. Then

$$m_{j+h}^{(l)} \geqslant q^h m_j^{(l)} > p(n_s + n_{s-1}) \geqslant n_{s+1} + n_s$$

Let now f be a continuous function on the circle group T such that f(n) = 0 if $n \notin E \cup F$. For every positive integer N let

$$S_N(f) = \sum_{n=-N}^{N} \hat{f}(n) e^{int}.$$

The theorem will follow if we prove that for every N

$$||S_N(f)||_{\infty} \leqslant C ||f||_{\infty},$$

where C is a constant depending only on the set $E \cup F$. Clearly, we may suppose that $N \in E \cup F$. For every positive integer n, let

$$K_n(t) = \sum_{j=-n}^{n} \left(1 - \frac{|j|}{n+1}\right) e^{ijt}$$

be the Féjer kernel, and $V_n = 2K_{2n+1} - K_n$ the de la Vallée Poussin kernel. Then (see [2], p. 15) we get

Firstly, let $N = n_s + n_{s-1}$. Then, according to (ii),

(3)
$$S_N(f) = V_{N-1} * f - \sum \hat{V}_{N-1}(j) \hat{f}(j) e^{ijt}$$

where the summation is over all $j \in F$ such that

$$n_s + n_{s-1} < j \leqslant 2n_s + 2n_{s-1}$$
.

Remark that $2n_s + 2n_{s-1} < n_{s+1} + n_1$, since $n_{s+1}/n_s > 1 + \sqrt{3}$.

Since, by definition, $|\bar{V}_n(j)| \leq 1$, and the summation on the right--hand side of (3) contains at most A terms, by (i) we get

(4)
$$||S_N(f)||_{\infty} \leq (3+A)||f||_{\infty}$$

Let $N = k \epsilon F$ with $n_{s+1} + n_1 > k > n_s + n_{s-1}$. Then

$$S_N(f) = S_{n_0+n_{q-1}}(f) + \sum f(j)e^{ijt},$$

where the summation is extended to all $j \in F$ such that $n_s + n_{s-1} < j \leq k$. By (4) we have

(5)
$$||S_N(f)||_{\infty} \leq (3+2A) ||f||_{\infty}.$$

Let now $N = n_{s+1} + n_r$ with $1 \le r \le s - 1$. Since, by (ii),

$$\exp\left(in_{s+1}t\right)V_{n_{s-1}}*f = \sum_{|j-n_{s+1}| \leq 2n_{r}-1} \hat{V}_{n_{r}-1}(j-n_{s+1})\hat{f}(j)\exp\left(ijt\right)$$

and $\hat{V}_{n_r-1}(j-n_{s+1})=1$ for $|j-n_{s+1}|\leqslant n_r$, the following identity holds true:

$$(6) S_{N}(f) = S_{n_{s}+n_{s-1}}(f) + \exp(in_{s+1}t) V_{n_{r}-1} *f - \sum_{2n_{r}-1 \geqslant |j-n_{s+1}| > n_{r}} \hat{V}_{n_{r}-1}(j-n_{s+1}) \hat{f}(j) \exp(ijt) + \sum_{n_{s}+n_{s-1} < j < n_{s+1}-n_{r}} \hat{f}(j) \exp(ijt).$$

Remark that $\bar{f}(j) \neq 0$ in the summations on the right-hand side of (6) only if $j \in F$. Hence each sum contains at most A terms so that, by (4) and (i),

$$(7) ||S_N(f)||_{\infty} \leq (3+A)||f||_{\infty} + 3||f||_{\infty} + 2A||f||_{\infty} = (6+3A)||f||_{\infty}.$$

Finally, suppose that $N = k \in F$ with $n_{s+1} + n_1 < k < n_{s+1} + n_s$. Then, if r is the largest integer such that $n_{s+1} + n_r < k$, we have

$$S_N(f) = S_{n_{s+1}+n_r}(f) + \sum f(j)e^{ijt},$$

where the summation is over all $j \in F$ such that $n_{s+1} + n_r < j \leq k$. Hence

(8)
$$||S_N(f)||_{\infty} \leq (6+4A)||f||_{\infty}.$$

Therefore, by (4), (5), (7) and (8), inequality (2) holds with C = 6 + 4A.

REFERENCES

- [1] A. Figà-Talamanca, An example in the theory of lacunary Fourier series, Bollettino della Unione Matematica Italiana 3 (1970), p. 375-378.
- [2] Y. Katznelson, An introduction to harmonic analysis, New York 1968.
- [3] L. Pedemonte, Sets of uniform convergence, Colloquium Mathematicum 33 (1975), p. 123-132.

Reçu par la Rédaction le 17. 4. 1975