Periodic solutions of $x'' + f(\mu, x) = 0$

by G. J. Butler* and H. I. Freedman** (Alberta)

Abstract. An examination is made of those regions (called admissible sets) in the (μ, A) -plane for which the initial value problem $x''(t) + f(\mu, x(t)) = 0$, x(0) = A, x'(0) = 0, has a non-trivial periodic solution. In particular, results obtained previously for the case that f is linear in μ are generalized to the non-linear case.

In addition, the converse problem is discussed in some detail, whence it is shown how to construct differential equations having rather general sets in the (μ, A) -plane as boundaries of their admissible sets.

1. Introduction. In [2], there was considered the problem of characterizing the set of points (μ, A) (the admissible set) for which the solution of the equation

(1)
$$x''(t) + g(x(t)) + \mu h(x(t)) = 0 \qquad (' = d/dt)$$

with initial conditions x(0) = A, x'(0) = 0, is a non-trivial periodic function. In this paper, we extend some of these results to the equation

(2)
$$x''(t)+f(\mu,x(t))=0, \quad x(0)=A, \quad x'(0)=0$$

and illustrate certain essential differences that occur when f is non-linear in μ . We shall also be interested in obtaining some results of a converse nature.

We shall use the following notation:

$$F(\mu, y) = \int_0^y f(\mu, x) dx,$$

 $\mathscr{A} = \{(\mu, A) \in \mathbb{R}^2 : (2) \text{ admits a non-trivial periodic solution}\}.$

Throughout, we shall assume that $f(\mu, x)$ is jointly continuous in both variables and that solutions of (2) are unique, although continuity in μ will be relaxed in one case involving a converse theorem.

^{*} The research for this paper was partially supported by the National Research Council of Canada, Grant No. NRC A8130.

^{**} The research for this paper was partially supported by the National Research Council of Canada, Grant No. NRC A4823.

By a periodic solution, we shall always mean a non-constant periodic solution.

Among the many other works devoted to the study of periodic solutions to (2), we mention in particular those of Cesari [3] and Loud [5].

One could interpret μ as a non-linear control; for example a know-ledge of the admissible set might allow a path in the (μ, A) -plane to be found permitting a transfer from a non-periodic orbit to a periodic orbit.

In [2], a general criterion for the existence of a periodic solution to (2) was given under somewhat weaker hypotheses on f, than in [3] or [5]. We shall find useful a corollary of that result which we state without proof as

LEMMA 1. Let $f(\mu, A) < 0$ ($f(\dot{\mu}, A) > 0$). Then a necessary and sufficient condition for the solution of (2) to be periodic is that there exist B > A (B < A) such that $F(\mu, A) = F(\mu, B) > F(\mu, y)$ for A < y < B (B < y < A).

A corresponding result has been obtained by one of the authors [1] for certain equations of the form $x'' + g(x)h(x'^2) + f(\mu, x) = 0$.

2. Admissible regions of the (μ, A) -plane. If $(\mu, A) \in \mathcal{A}$, we shall say that (μ, A) is admissible for (2), and \mathcal{A} will be called the admissible set for f.

The following result generalizes the case that f is linear in μ , which was given in [2].

THEOREM 1. A is open.

Proof. Let $(\mu_0, A_0) \in \mathcal{A}$. By Lemma 1, there exists B_0 such that

$$F(\mu_0, A_0) = F(\mu_0, B_0) > F(\mu_0, y),$$

for y between A_0 and B_0 , and we may, without loss of generality, assume that $B_0 < A_0$, so that $f(\mu_0, B_0) < 0 < f(\mu_0, A_0)$. By continuity, there exists $\delta_0 > 0 \ni f(\mu, B) < -\delta_0 < 0 < \delta_0 < f(\mu, A)$ whenever (μ, A) and (μ, B) are sufficiently close to (μ_0, A_0) , (μ_0, B_0) , respectively. Further, by the implicit function theorem and the fact that $f(\mu_0, B_0) \neq 0$, it follows that

$$F(\mu, A) = F(\mu, x)$$

has a unique solution $x = B = B(\mu, A)$ for (μ, A) sufficiently close to (μ_0, A_0) such that $B(\mu, A) \to B_0$ as $(\mu, A) \to (\mu_0, A_0)$ and $F(\mu, A) = F(\mu, B) > F(\mu, y)$ whenever B < y < A, and the proof of the theorem is complete.

3. Description of the boundary of \mathscr{A} . As in [2] we introduce the following classification of the boundary points of \mathscr{A} . Let $(\mu_0, A_0) \in \partial \mathscr{A}$. We shall say that (μ_0, A_0) is of type I if $f(\mu_0, A_0) = 0$, is of type II if it

is in the closure of the set $\{(\mu, A) \in \partial \mathscr{A} : \text{ there exist } B \neq A \text{ such that } F(\mu, B) = F(\mu, A) \text{ and } f(\mu, B) = 0, \text{ and } (\mu, A) \text{ is not of type I}\}, \text{ and is of } type \text{ III if it is in the closure of the set } \{(\mu, A) \in \partial \mathscr{A} : F(\mu, A) > F(\mu, y), \text{ either for all } y > A \text{ or for } y < A, \text{ and } (\mu, A) \text{ is not of type I or II}\}.$

That this gives a complete classification of the boundary points of $\mathscr A$ is indicated by

THEOREM 2. Let $(\mu_0, A_0) \in \partial \mathcal{A}$. Then (μ_0, A_0) is one of the types I, II or III.

Proof. This follows along the lines of the proof for the linear case. See [2].

In [2], suitable hypotheses were given to ensure that boundary points exclusively of one of the types I, II or III were interior to a continuous arc of such points. Again, for f non-linear in μ , analogous results hold true, the proofs requiring merely a straightforward adaptation of those given in [2] and we obtain

THEOREM 3. In parts (a), (b) and (c), assume that (μ_0, A_0) is a boundary point of \mathscr{A} , exclusively of types I, II and III, respectively.

- (a) Suppose that f_{μ} exists as a continuous, non-vanishing function of (μ, A) in some neighbourhood of (μ_0, A_0) . Then (μ_0, A_0) is relatively interior to a continuous arc of boundary points exclusively of type I.
- (b) Suppose that f_{μ} and f_{A} exist as continuous, non-vanishing functions in some neighborhood of (μ_{0}, B_{0}) (see definition of type II for meaning of B_{0}). Assume, in addition, that

$$\int_{A_0}^{B_0} f_{\mu}(\mu_0, y) \, dy \neq 0.$$

Then (μ_0, A_0) is relatively interior to a continuous arc of boundary points exclusively of type II.

(c) Define $G(\mu)$ to be $\limsup_{y\to\infty} F(\mu,y)$. Suppose that G_{μ} and F_{μ} exist as continuous functions in neighbourhoods of μ_0 and (μ_0, A_0) , respectively, with $G_{\mu}(\mu_0) \neq F_{\mu}(\mu_0, A_0)$. In addition, let $F(\mu_0, A_0) > F(\mu_0, x)$ for all $x > A_0$. Then (μ_0, A_0) is relatively interior to a continuous arc of boundary points exclusively of type III.

For certain cases of equation (2), the boundary curves may be explicitly parameterized. For example, for the equation

$$x'' + x + \mu x^2 = 0$$
, $x(0) = A$, $x'(0) = 0$,

the boundary curves of type II are the branches of the hyperbola $\mu A = \frac{1}{2}$ [6].

In [2], this monotone behaviour of type II curves was shown to hold for more general equations of the form (2) with f linear in μ . Here we shall further extend this result for f non-linear in μ . The proof is based on that given for the linear case. We shall sketch the proof, giving the necessary modifications.

THEOREM 4. Assume that $f(\mu, x)$ is continuously differentiable with respect to μ for each x, with $f_{\mu}(\mu, x) > 0$ for all (μ, x) and that there exists $\overline{\mu}$, \overline{A} such that $(x - \overline{A})f(\overline{\mu}, x) > 0$ for $x \neq \overline{A}$. Let (μ_0, A_0) be a boundary point of type II but not of type III, with $\mu_0 > \overline{\mu}$, $A_0 > \overline{A}$. Then there exists a continuous strictly decreasing are

$$arGamma = \{(\mu, A(\mu)) \colon \mu_0 \leqslant \mu < \mu^*\}$$

of such points, with $\lim_{\mu \to \mu^*} A(\mu) = 0$ if the maximal interval $[\mu_0, \mu^*)$ of definition of the arc is finite.

Proof. Since (μ_0, A_0) is of type II, but not of type III, there exists $B_0 < \overline{A}$ such that $F(\mu_0, B_0) = F(\mu_0, A_0) > F(\mu_0, y)$ for $B_0 < y < A_0$, and $f(\mu_0, B_0) = 0$. The conditions of the theorem imply that $f(\mu, B_0) > 0$, for $\mu > \mu_0$, and so, provided there exists B with $B_0 < B < \overline{A}$ such that $F(\mu, B) > F(\mu, \overline{A})$, we may define $B(\mu)$ (for $\mu_0 \le \mu < \mu^*$, say) to be

$$\sup \{y \colon B_0 < y < ar{A} \ ext{ and } \ F(\mu,y) = \sup_{B_0 < B < ar{A}} F(\mu,B) \}.$$

We have $B_0 < B(\mu) < 0$ and $f(\mu, B(\mu)) = 0$. $B(\mu_0)$ is equal to B_0 . $B(\mu)$ is non-decreasing; for let $\mu_0 \leqslant \mu_1 < \mu_2 < \mu^*$ and let $B(\mu_i) = B_i$. Suppose that $B_1 > B_2$. Then $F(\mu_2, B_2) > F(\mu_2, B_1)$ (definition of $B_2 = B(\mu_2)$), which inequality may be written

(3)
$$\int_{B_1}^{B_2} f(\mathbf{0}, x) dx > \int_{B_2}^{B_1} (f(\mu_2, x) - f(\mathbf{0}, x)) dx.$$

However, using the condition on f_{μ} ,

$$f(\mu_1, B_2) < f(\mu_2, B_2) = 0$$

and so

$$F(\mu_1, B_2) < \sup_{B_0 \leqslant y \leqslant \overline{\mathcal{A}}} F(\mu_1, y) = F(\mu_1, B_1).$$

Therefore

$$(4) \qquad \int\limits_{B_{1}}^{B_{2}} f(0\,,\,x)\,dx \\ < \int\limits_{B_{2}}^{B_{1}} \left(f(\mu_{1},\,x) - f(0\,,\,x)\right)dx < \int\limits_{B_{2}}^{B_{1}} \left(f(\mu_{2},\,x) - f(0\,,\,x)\right)dx$$

again using the condition on f_{μ} . This contradicts (3). Thus $B_1 \leqslant B_2$ and $B(\mu)$ is non-decreasing.

The next step is to show that $F(\mu, B(\mu))$ is continuous as a function of μ . This is a straightforward copy of the argument given in the linear case and we omit the details. That the equation $F(\mu, A) = F(\mu, B(\mu))$ has a unique solution also follows straightforwardly using the argument for the linear case, as does the continuity of $A = A(\mu)$.

We then have for $\mu_0\leqslant \mu_1<\mu_2<\mu^*$, $\int\limits_{\bar{A}}^{A_2}f(\mu_2,y)dy=\int\limits_{\bar{A}}^{B_2}f(\mu_2,y)dy$ $<\int\limits_{\bar{A}}^{B_2}f(\mu_1,y)dy$ (condition on $f_{\mu})\leqslant\int\limits_{\bar{A}}^{B_1}f(\mu_1,y)dy$ (definition of B_1) $=\int\limits_{\bar{A}}^{A_1}f(\mu_1,y)dy$. The conditions of the theorem imply that $\int\limits_{\bar{A}}^{x}f(\mu,y)dy$ is increasing in both μ and x whenever $x\geqslant \bar{A}$, and so $A_2< A_1$. Thus $A(\mu)$ is strictly decreasing in (μ_0,μ^*) . Finally, the behaviour of $A(\mu)$ as $\mu\to\mu^*$ may be verified just as in the proof given for the linear case.

As an analogue to Corollary 2 of [2], we have

COROLLARY. The energy function $F(\mu, A)$ is (strictly) decreasing along the arcs of type II defined in the above theorem.

4. Isolated boundary points for $f(\mu, x)$ linear in μ . The question occurs whether or not there can exist isolated boundary points of \mathscr{A} . We shall see in the next several sections that there can in general, but we show here that in the case $f(\mu, x)$ is linear in μ isolated boundary points of \mathscr{A} are impossible.

THEOREM 5. Let f be continuous in x and linear in μ . Then there are no isolated boundary points of \mathscr{A} .

Proof. Let $(\mu_0, A_0) \in \partial \mathscr{A}$. Write $f(\mu, x) = g(x) + \mu h(x)$. If $f(\mu_0, A_0) = 0$, either the line $A = A_0$ (in the case $h(A_0) = 0$) or the arc $\mu = -g(A)/h(A)$, A in a neighbourhood of A_0 (in the case $h(A_0) \neq 0$) is a curve of points in the complement of \mathscr{A} . Clearly, then (μ_0, A_0) cannot be an isolated point of $\partial \mathscr{A}$.

Henceforth, we may assume that $f(\mu_0, A_0) \neq 0$; without loss of generality, we shall suppose that $f(\mu_0, A_0) > 0$. Consider the set

$$S = \{y < A_0: F(\mu_0, y) = F(\mu_0, A_0)\}.$$

(i) If S is empty, then $F(\mu_0,\,A_0)>F(\mu_0,\,y)$ for all $y< A_0$ and, therefore,

$$F(\mu_0, A) > F(\mu_0, y)$$

for all y < A, for values of A in some sufficiently small right neighbourhood of A_0 . For such values of A, it follows that (μ_0, A) is in the complement of $\mathscr A$ and again (μ_0, A_0) cannot be an isolated point of $\partial \mathscr A$.

(ii) If S is not empty, let $B_0 = \sup S$. Then $B_0 < A_0$ and

$$F(\mu_0, B_0) = F(\mu_0, A_0) > F(\mu_0, y)$$

for $B_0 < y < A_0$. Since $(\mu_0, B_0) \notin \mathcal{A}$, we conclude that $f(\mu_0, B_0) = 0$ and arguing as at the beginning of this proof, there exists a non-trivial arc \mathscr{C} which contains (μ_0, B_0) such that $f(\mu, B) = 0$ for $(\mu, B) \in \mathscr{C}$. If the perpendicular projection of \mathscr{C} on to the μ -axis is not the singleton $\{\mu_0\}$, then using continuity considerations and the fact that $f(\mu, A)$ is bounded away from zero in a suitable neighbourhood of (μ_0, A_0) , we deduce that there is a non-trivial arc \mathscr{C}' through (μ_0, A_0) such that for each $(\mu, A) \in \mathscr{C}'$, there exists $(\mu, B) \in \mathscr{C}$ (same μ) such that $F(\mu, B) = F(\mu, A)$. Choosing $y = B^* = B^*(\mu)$, as large as possible in the interval $I = [B, \frac{1}{2}(A_0 + B)]$, to maximize $F(\mu, y)$, $y \in I$, we see that $B^* \to B_0$ as $(\mu, A) \to (\mu_0, A_0)$ along the arc \mathscr{C}' , and $f(\mu, B^*) = 0$. Since $F(\mu, B^*) \to F(\mu_0, B_0) = F(\mu_0, A_0)$ as $(\mu, A) \to (\mu_0, A_0)$ along \mathscr{C}' , we may find an arc \mathscr{C}'' through (μ_0, A_0) with $F(\mu, B^*) = F(\mu, A)$, for all μ with $(\mu, A) \in \mathscr{C}''$. (Here we are using the fact that $f(\mu_0, A_0) > 0$ to assert the existence of \mathscr{C}'' .)

The behaviour of $f(\mu, A)$ near (μ_0, A_0) indicates that for $(\mu, A) \in \mathscr{C}''$ sufficiently close to (μ_0, A_0) , we have

$$F(\mu, B^*) = F(\mu, A) > F(\mu, y)$$

for $B^* < y < A$. Since $f(\mu, B^*) = 0$, it follows that these points of \mathscr{C}' are in the complement of \mathscr{A} , and (μ_0, A_0) is not an isolated point of $\partial \mathscr{A}$.

Finally, we must deal with the case that $\mathscr C$ projects on to $\{\mu_0\}$ on the μ -axis. Then $\mu_0 = -g(B)/h(B)$ for B in some neighbourhood of B_0 . For such B and either for all $\mu > \mu_0$ or for all $\mu < \mu_0$, we have $f(\mu, B) = g(B) + \mu h(B) > 0$. For such values of μ , choose $g = B^*$ as above and construct $\mathscr C'$ as before.

This completes the proof of the theorem.

In the remaining sections of this paper we examine the conditions under which an equation of the form (2) can be constructed having a given set imbedded in the boundary set of \mathscr{A} .

5. Converse theorems for type I boundary points. We are interested here in discussing the problem of when a given set in R^2 can be considered the type I boundary of the admissible set of some equation of the form (2). We first consider sets which do not contain any vertical segments, that is line segments parallel to the A-axis.

THEOREM 6. Let Γ be a closed set in R^2 with empty interior and no vertical line segments. Then there is a function $f(\mu, x)$, locally Lipschitzian in μ and in x such that the boundary of \mathscr{A} is $Z = \Gamma \cup (\mu$ -axis).

Proof. Define $\varphi(\mu, x)$ to be $\varrho((\mu, x), \Gamma)$, where ϱ is the Euclidean distance function in \mathbb{R}^2 . Then $\varphi(\mu, x)$ is Lipschitzian in \mathbb{R}^2 and its zero set is Γ , whereas $\varphi(\mu, x) > 0$ for $(\mu, x) \notin \Gamma$.

Let

(5)
$$\Phi(\mu, x) = \int_0^x \varphi(\mu, y) dy,$$

and

(6)
$$\hat{\varPhi}(\mu, x) = \inf_{\frac{1}{2}x \leqslant y \leqslant x} (\varPhi(\mu, 2y) - \varPhi(\mu, y))$$

and also

(7)
$$\tilde{\varPhi}(\mu, x) = \min \left(\hat{\varPhi}(\mu, x), 1 \right).$$

The hypothesis concerning vertical segments implies that $\tilde{\Phi}(\mu, x)$ is never zero for $x \neq 0$. Now we define the weight function $w(\mu, x)$ by

(8)
$$w(\mu, x) = \frac{x}{\psi(x) + \tilde{\Phi}(\mu, x)},$$

where

(9)
$$\psi(x) = \begin{cases} (x^2 - 1)^2, & |x| \leq 1, \\ 0, & |x| > 1. \end{cases}$$

We can now take $f(\mu, x)$ to be defined by

$$(10) f(\mu, x) = w(\mu, x)\varphi(\mu, x).$$

Clearly $xf(\mu, x) \geqslant 0$ for all x with equality only for x = 0 or $(\mu, x) \in \Gamma$, that is, the zero set of $f(\mu, x)$ is Z. Now we show that the theorem will follow from $\lim_{x \to +\infty} \int_0^x f(\mu, x) dx = \lim_{x \to -\infty} \int_0^x f(\mu, x) dx = +\infty$. For since $xf(\mu, x) \geqslant 0$, (μ, A) fails to belong to $\mathscr A$ iff either $(\mu, A) \in Z$ or $(\mu, A) \notin Z$ and $F(\mu, A) = F(\mu, B)$ for some $(\mu, B) \in Z$. Denote by Z' the set of (μ, A) for which the latter alternative holds. It is easily seen that the divergence of the above integrals will imply that $Z \cup Z'$ is closed. (Z') will in fact comprise the type II boundary points of $\mathscr A$.

Suppose $(\mu_0, A_0) \in Z'$. Keeping for the moment $\mu = \mu_0$ fixed and regarding $f(\mu_0, x)$, $F(\mu_0, x)$ as functions of x, we have $F_x(\mu_0, A_0) = f(\mu_0, A_0) \neq 0$ and so the image of any neighbourhood of A_0 under the map $F(\mu_0, x)$ has positive Lebesgue measure. However, F is continuously differentiable and we may apply Sard's theorem [7] to obtain the result that the image of the critical set of $F(\mu_0, x)$, and hence of the set of A for which $F(\mu_0, A) = F(\mu_0, B)$ for some B in the critical set, has measure zero. It follows that Z' is nowhere dense. Thus the complement of $\mathscr{A} = Z \cup Z'$ has non-empty interior and is therefore the boundary of \mathscr{A} .

To complete the proof, therefore, we need to show that $\lim_{x\to +\infty} \int_0^x f(\mu, x) dx$ = $\lim_{x\to -\infty} \int_0^x f(\mu, x) dx = +\infty$. But for $x \ge 2$,

$$\int_{0}^{x} f(\mu, y) dy \geqslant \int_{\frac{1}{2}x}^{x} f(\mu, y) dy = \int_{\frac{1}{2}x}^{x} w(\mu, y) \varphi(\mu, y) dy$$

$$= \int_{\frac{1}{2}x}^{x} \frac{y}{\tilde{\Phi}(\mu, y)} \varphi(\mu, y) dy \geqslant \int_{\frac{1}{2}x}^{x} \frac{y}{\hat{\Phi}(\mu, y)} \varphi(\mu, y) dy.$$

Now for $\frac{1}{2}x \leqslant y \leqslant x$, $\hat{\Phi}(\mu, y) \leqslant \Phi(\mu, x) - \Phi(\mu, \frac{1}{2}x)$ and so

$$\int\limits_0^x \varphi(\mu,y)\,dy\geqslant \frac{x}{2\left(\varPhi(\mu,x)-\varPhi(\mu,\frac{1}{2}x)\right)}\int\limits_{\frac{1}{2}x}^x \varphi(\mu,y)\,dy\,=\frac{x}{2}.$$

Hence
$$\lim_{x\to\infty}\int\limits_0^x f(\mu,y)\,dy=+\infty$$
. Similarly $\lim_{x\to-\infty}\int\limits_0^x f(\mu,y)\,dy=+\infty$.

We note that this proof was constructive in the sense that we actually showed how to construct the $f(\mu, x)$. We note also that for the equation so constructed, the admissible set has no boundary points of type III and its boundary points of type I consist of Γ and an additional horizontal line.

We now consider the case when I' has vertical segments. We write Γ as $\Gamma_1 \cup \Gamma_2$, where Γ_1 is the closure of all points in Γ which do not belong to vertical segments. To obtain Γ_2 we proceed as follows. Let Γ_2^* be the set of $(\mu, x) \in \Gamma$ such that (μ, x) belongs to a vertical segment, and let $\Pi(\Gamma_2^*)$ be the projection of Γ_2^* on the μ -axis. Then $\Gamma_2 = \{(\mu, x) : (\mu, x) \in \Gamma \text{ and } \mu \in \Pi(\Gamma_2^*)\}$. Thus Γ_2 consists of Γ_2^* together with all points in Γ_1 whose μ values are the same as those in Γ_2^* .

THEOREM 7. Let $\Pi(\Gamma_2)$ be nowhere dense. (a) Then there exists $f(\mu, x)$, continuous in μ and Lipschitzian in x such that the type I boundary points of $\mathscr A$ are $\Gamma_1 \cup \Pi^{-1}$ (closure of $\Gamma_2 \cup (\mu$ -axis). (b) There exists $f(\mu, x)$, Lipschitzian in x (but discontinuous in μ) such that the type I boundary points of $\mathscr A$ are $\Gamma_1 \cup (closure\ of\ \Gamma_2) \cup (\mu$ -axis).

Proof. Let $\varphi(\mu, x)$ and $w(\mu, x)$ be as in Theorem 6 substituting Γ_1 for Γ . Denote the closure of a set S by \overline{S} .

- (a) Defining $f(\mu, x) = w(\mu, x)\varphi(\mu, x)\varrho(\mu, \Pi(\Gamma_2))$ clearly gives the required result, since if $\mu \notin \overline{H(\Gamma_2)}$, $\underline{x}f(\mu, x) > 0$ as before except when $(\mu, x) \in \Gamma_1$ or x = 0, whereas if $\mu \in \overline{H(\Gamma_2)}$, $f(\mu, x) = 0$, for all x.
 - (b) Define $\chi(\mu, x)$ by

$$\chi(\mu, x) = \begin{cases} 0, & \mu \notin \overline{\Pi(\Gamma_2)}, \\ \varrho((\mu, x), \overline{\Gamma_2}), & \mu \in \overline{\Pi(\Gamma_2)}. \end{cases}$$

Then $f(\mu, x) = w(\mu, x)\varphi(\mu, x)\varrho(\mu, \overline{H(\Gamma_2)}) + \chi(\mu, x)$ is the required function. Clearly if $\mu \notin \overline{H(\Gamma_2)}$, then $\chi = 0$ and arguments analogous to those used in Theorem 6 prevail. If $\mu \in \overline{H(\Gamma_2)}$ and $(\mu, x) \notin \overline{\Gamma_2}$, then $f(\mu, x) = \chi(\mu, x) > 0$. If $\mu \in \overline{H(\Gamma_2)}$ and $(\mu, x) \in \overline{\Gamma_2}$, then $f(\mu, x) = \chi(\mu, x) = 0$. Further, since $\overline{H(\Gamma_2)}$ has empty interior, then each point in Γ_2 is the limit of a sequence of points in the admissible set. Hence Γ_2 forms part of the type I boundary proving the theorem.

6. Converse theorems for type II boundary points. Again we suppose that we are required to find an equation of the form (2) so that a given set Γ forms at least a subset of the type II boundary points of \mathscr{A} . We shall assume that Γ is given as the zero set of a certain function $\varphi(\mu, x)$.

Consider first the case that $(\mu, A) \in \Gamma$ iff $A = \alpha(\mu)$ for some μ -domain D, and we assume that α may be extended, if necessary, to the real line. We search for a function $f(\mu, x)$ for which

(11)
$$F(\mu, x) = w(\mu, x)\varphi(\mu, x) + c(\mu),$$

where w and c will be appropriately chosen so that the energies $F(\mu, A)$, $F(\mu, B)$ are matched, where $B = \beta(\mu)$, $\mu \in D$, and (μ, B) is the point of type I associated with (μ, A) (see the definitions at the beginning of Section 3).

Since $F(\mu, x) = \int_0^x f(\mu, y) dy$, we require $0 = F(\mu, 0) = w(\mu, 0) + \varphi(\mu, 0) + e(\mu)$, so that

(12)
$$F(\mu, x) = w(\mu, x)\varphi(\mu, x) - w(\mu, 0)\varphi(\mu, 0).$$

The energy-matching condition requires that

$$(13) w(\mu, B)\varphi(\mu, B) = 0.$$

However, we must have $\varphi(\mu, B) \neq 0$, otherwise (μ, B) would be in Γ . Hence

$$(14) w(\mu, B) = 0.$$

Moreover, for (μ, B) to be type I and (μ, A) to be type II, we need

(15)
$$f(\mu, B) = F_x(\mu, B) = w(\mu, B)\varphi_x(\mu, B) + w_x(\mu, B)\varphi(\mu, B) = 0$$
,

(16)
$$f(\mu, A) = F_x(\mu, A) = w(\mu, A)\varphi_x(\mu, A) + w_x(\mu, A)\varphi(\mu, A) \neq 0$$
,

leading to the conditions

(17)
$$w_r(\mu, B) = 0, \quad w(\mu, A)\varphi_r(\mu, A) \neq 0.$$

So we shall require that for a fixed μ , A is at most a simple root of $\varphi(\mu, x) = 0$ and B is at least a double root of $w(\mu, x) = 0$. Accordingly, we choose $w(\mu, x)$ to be $(x - B)^2$ and we shall take $B = \beta(\mu) < \alpha(\mu) = A$. From (12), we have

$$f(\mu, x) = (x - \beta(\mu))^2 + 2(x - \beta(\mu))(x - \alpha(\mu)) = (x - \beta(\mu))(2x - \alpha(\mu) - \beta(\mu)).$$

Since $f(\mu, x) < 0$ for $\beta(\mu) < x < \frac{1}{2}(\alpha(\mu) + \beta(\mu))$ and $f(\mu, x) > 0$ for $\frac{1}{2}(\alpha(\mu) + \beta(\mu)) < x < \alpha(\mu)$, whereas $0 = f(\mu, \beta(\mu)) < f(\mu, \alpha(\mu))$, it follows from Lemma 1 that $(\mu, \alpha(\mu))$ is a type II boundary point (and $(\mu, \beta(\mu))$ is a type I boundary point). Thus we have proved

THEOREM 8. Let $\varphi(\mu, x) = x - \alpha(\mu)$, $w(\mu, x, B) = (x - \beta(\mu))^2$, where $\beta(\mu) < \alpha(\mu)$ are functions of μ on the real line and let Γ be the zero set of φ restricted to some μ -domain D. Then for $f(\mu, x) = F_x(\mu, x)$, where $F(\mu, x)$ is given by (12), Γ is a subset of the boundary points of $\mathscr A$ of type II.

We now seek to extend this to the case where $\varphi(\mu, x)$ is a product of linear functions.

THEOREM 9. Let $\varphi(\mu, x) = \prod_{i=1}^{k} (x - a_i(\mu))$, where $a_1(\mu) \leq a_2(\mu) \leq \dots$ $\dots \leq a_k(\mu)$, and let Γ be a subset of the zero set of φ . Define $w(\mu, x)$ to be $(-1)^k \prod_{j=1}^{\lfloor (k+1)/2 \rfloor} (x - \beta_j(\mu))^2$, where the β_j are functions of μ satisfying

(18) $a_1(\mu) \leqslant \beta_1(\mu) \leqslant a_2(\mu) \leqslant a_3(\mu) \leqslant \beta_2(\mu) \leqslant a_4(\mu) \leqslant a_5(\mu) \leqslant \beta_3(\mu) \leqslant \ldots$, the sequence of inequalities terminating with

$$\ldots \leqslant a_{k-1}(\mu) \leqslant \beta_{\frac{1}{2}k}(\mu) \leqslant a_k(\mu), \quad k \text{ even},$$

$$\ldots \leqslant a_{k-2}(\mu) \leqslant \beta_{\frac{1}{2}(k-1)}(\mu) \leqslant a_{k-1}(\mu) \leqslant a_k(\mu) \leqslant \beta_{\frac{1}{2}(k+1)}(\mu), \quad k \text{ odd}$$

and any equality holding on at most an isolated set of values of μ . Then the conclusion of Theorem 8 holds.

Proof. Again we may use (12) to write

$$f(\mu, x) = (-1)^k \prod_{j=1}^{[(k+1)/2]} (x - \beta_j(\mu)) \psi(\mu, x),$$

where

$$\begin{split} \psi(\mu,x) &= \sum_{l=1}^{[(k+1)/2]} \prod_{\substack{j=1\\j\neq l}}^{[(k+1)/2]} 2 \left(x - \beta_j(\mu)\right) \prod_{i=l}^k \left(x - a_i(\mu)\right) + \\ &+ \sum_{l=1}^k \prod_{\substack{i=1\\j\neq l}}^k \left(x - a_i(\mu)\right) \prod_{j=1}^{[(k+1)/2]} \left(x - \beta_j(\mu)\right). \end{split}$$

We note that $\psi(\mu, x)$ is a polynomial in x of degree $k + \lfloor (k+1)/2 \rfloor - 1$, and hence the number of sign changes as a function of x is at most $k + \lfloor (k+1)/2 \rfloor - 2$.

Next we evaluate $\psi(\mu, a_m(\mu))$ and $\psi(\mu, \beta_n(\mu)), m = 1, ..., k; n = 1, ..., [(k+1)/2],$

$$\psi\left(\mu,\,\alpha_m(\mu)\right) = \prod_{\substack{i=1\\i\neq m}}^m \left(\alpha_m(\mu) - \alpha_i(\mu)\right) \cdot \prod_{\substack{j=1\\j\neq m}}^{\lfloor (k+1)/2\rfloor} \left(\alpha_m(\mu) - \beta_j(\mu)\right).$$

Hence, whenever strict inequality holds throughout (18), we have

$$\begin{split} \operatorname{sgn} \psi \big(\mu \,,\, \alpha_m(\mu) \big) &= (-1)^{k-m} \cdot (-1)^{\lceil (k+1)/2 \rceil - \lceil m/2 \rceil} = (-1)^{\lceil (1-k)/2 \rceil + \lceil -m/2 \rceil}, \\ \psi \big(\mu \,,\, \beta_n(\mu) \big) &= 2 \prod_{\substack{j=1 \\ j \neq n}}^{\lceil (k+1)/2 \rceil} \big(\beta_n(\mu) - \beta_j(\mu) \big) \cdot \prod_{i=1}^k \big(\beta_n(\mu) - a_i(\mu) \big). \end{split}$$

Thus, whenever strict inequality holds throughout (18), we have

$$\operatorname{sgn} \psi(\mu, \beta_n(\mu)) = (-1)^{k-2n+1} \cdot (-1)^{[(k+1)/2]-n} = (-1)^{[(1-k)/2]-n+1}.$$

Now consider the signs of ψ evaluated at consecutive terms of the

$$a_{2s-2}\leqslant a_{2s-1}\leqslant \beta_s\leqslant a_{2s}\leqslant a_{2s+1}$$
.

Suppressing the constant factor $(-1)^{[(1-k)/2]}$, the signs are, respectively, $(-1)^{1-s}$, $(-1)^{-s}$, $(-1)^{-s+1}$, $(-1)^{-s}$, $(-1)^{-s-1}$. Thus as we progress through the sequence, the signs alternate, giving at least k + [(k+1)/2] - 2 changes of sign. Since we have noted above that this is the maximum possible number, there are precisely this many sign changes, and by virtue of the factor $(-1)^k$ occurring in $w(\mu, x)$, the conditions of Lemma 1 are fulfilled for each value of x between each adjacent pair $a_i(\mu)$, $\beta_j(\mu)$, and the theorem is proved.

Remarks. We note that for the function f constructed in the proof of the theorem, the zero set of φ , and the type II boundary set of $\mathscr A$ coincide, provided that φ is continuous. It is not difficult to see that we may, with only slight modifications in the construction, handle certain functions φ of the form $\varphi(\mu, x) = \prod_{i=1}^k \left(x - a_i(\mu)\right) \cdot \prod_{j=1}^m \left[(x - \beta_j(\mu))^2 + \gamma_j(\mu)\right]$ which will allow us to obtain examples in which the boundary points of type II include isolated points (in contrast to the situation where f is linear in μ , as in Theorem 5) or may include closed curves. We believe that it should be possible to realize the zero set of any function $\varphi(\mu, x) = \sum_{i=1}^n c_i(\mu) x^i$ as the type II boundary, provided that the c_i are continuous and, except for an isolated set of values of μ , the roots of φ (as a function of x) are simple, but have been unable to obtain a result of this generality.

7. Converse theorems for type III boundary points. Since a type III boundary point requires of the energy function a certain asymptotic behaviour as x approaches either $+\infty$ or $-\infty$ (or both) there can be at most two type III boundary points for each fixed μ .

In the next two theorems we show how to construct $f(\mu, x)$ generating one and two such boundary curves, respectively.

THEOREM 10. Let $\beta > 0$ be the solution of $\int_0^\beta xe^x dx = \frac{1}{2}$. Then equation (2) with

(19)
$$f(\mu, x) = \begin{cases} (x+\beta - a(\mu))e^{x+\beta - a(\mu)}, & x \leq a(\mu) - \beta, \\ 2(x+\beta - a(\mu))e^{x+\beta - a(\mu)}, & x > a(\mu) - \beta, \end{cases}$$

has $A - a(\mu) = 0$ as the type III boundary curve.

Proof. $A - a(\mu) = 0$ is a boundary point of type III if $\int_0^{a(\mu)} f(\mu, x) dx = \int_0^{-\infty} f(\mu, x) dx$, since by (19) $f(\mu, x) < 0$ for $x < a(\mu) - \beta$ and $f(\mu, x) > 0$ for $x > a(\mu) - \beta$. But

$$\int\limits_0^{-\infty}f(\mu,x)\,dx=\int\limits_0^{a(\mu)-eta}f(\mu,x)\,dx+\int\limits_{a(\mu)-eta}^{-\infty}ig(x-a(\mu)+etaig)e^{x-a(\mu)+eta}\,dx \ =Fig(\mu,\,a(\mu)-etaig)+\int\limits_0^{-\infty}ye^ydy=Fig(\mu,\,a(\mu)-etaig)+1, \ \int\limits_0^{a(\mu)}f(\mu,x)\,dx=Fig(\mu,\,a(\mu)-etaig)+\int\limits_{a(\mu)-eta}^{a(\mu)}2ig(x-a(\mu)+etaig)e^{x-a(\mu)+eta}\,dx \ =Fig(\mu,\,a(\mu)-etaig)+2\int\limits_0^eta ye^ydy=Fig(\mu,\,a(\mu)-etaig)+1.$$

This proves the theorem.

THEOREM 11. Given $a_1(\mu) \leqslant a_2(\mu)$, with equality on at most an isolated set, there exists k > 0, $\beta_1 > 0$, $\beta_2 > 0$ such that equation (2) with

$$(20) \quad f(\mu, x) = \begin{cases} (x - a_1(\mu) + \beta_1) e^{x - a_1(\mu) + \beta_1}, & x \leqslant a_1(\mu) - \beta_1, \\ k (x - a_1(\mu) + \beta_1) (x - \frac{1}{2} a_1(\mu) - \frac{1}{2} a_2(\mu)) (x - a_2(\mu) - \beta_2), \\ a_1(\mu) - \beta_1 \leqslant x \leqslant a_2(\mu) + \beta_2, \\ (x - a_2(\mu) - \beta_2) e^{-x + a_2(\mu) + \beta_2}, & a_2(\mu) + \beta_2 \leqslant x, \end{cases}$$

has the zero set of $(A - a_1(\mu))(A - a_2(\mu))$ as the type III boundary of \mathscr{A} . Proof. Define u(r, s, t), v(r, s, t) by

$$u(r, s, t) = \int_{0}^{r} ty(y + a_{1} - a_{2} - r - s)(y + \frac{1}{2}a_{1} - \frac{1}{2}a_{2} - r)dy,$$
 $v(r, s, t) = \int_{0}^{-s} ty(y - a_{1} + a_{2} + r + s)(y - \frac{1}{2}a_{1} + \frac{1}{2}a_{2} + s)dy.$

Then u and v are continuous functions from \mathbb{R}^3 to \mathbb{R}^1 , such that u(r, s, t) = tu(r, s, 1), v(r, s, t) = tv(r, s, 1).

Now for any fixed positive value β_2 of s, we have $u(0, \beta_2, 1) = 0$, $u(r, \beta_2, 1)$ is of order r^4 for large positive values of r, and $v(0, \beta_2, 1) > 0$, $v(r, \beta_2, 1)$ is of order r for large positive values of r. Therefore there is a value $\beta_1 > 0$ of r for which $u(\beta_1, \beta_2, 1) = v(\beta_1, \beta_2, 1)$, and the homogeneity of u, v with respect to t allows us to choose a value k of t for which

 $u(\beta_1, \beta_2, k) = v(\beta_1, \beta_2, k) = 1$. Now the remainder of the proof follows along the lines of Theorem 10.

Remarks. We have already observed that for any set which is a type III boundary of an admissible set \mathscr{A} , the intersection of that set with any line perpendicular to the μ -axis is necessarily empty, a singleton set or a doubleton set. (The set must also be closed, by definition.) Conversely, given any such set Γ , we may embed it in the image of two arcs $a_1(\mu)$, $a_2(\mu)$ with $a_1(\mu) \leqslant a_2(\mu)$ for all μ and apply Theorem 11 to show that Γ may be realized as a subset of the type III boundary points of an admissible set \mathscr{A} .

We have not said much about the smoothness with respect to μ of the functions $f(\mu, x)$ that we have constructed in the converse theorem, but it is clear, at least for these constructions that the smoothness is linked with any regularity conditions with respect to μ that we impose on a set Γ of boundary points of the appropriate type.

In conclusion, we remark that the results of Sections 5–7 make it clear that there is a great generality in those closed sets which may be realized as the set of boundary points of some admissible set of a particular type, somewhat contrasting with the situation when the dependence of the parameter μ is linear.

References

- [1] G. J. Butler, The existence of periodic solutions of an autonomous second order non-linear differential, equation, Ann. Polon. Math. 30 (1974), p. 166-174.
- [2] and H. I. Freedman, Periodic solutions of $x'' + g(x) + \mu h(x) = 0$, Trans. Amer. Math. Soc. 197 (1974), p. 59-74.
- [3] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Springer-Verlag, Berlin 1971.
- [4] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York 1955.
- [5] W. S. Loud, Periodic solutions of $x'' + cx' + g(x) = \varepsilon f(t)$, Memoirs of Amer. Math. Soc. No. 31 (1959).
- [6] T. Maekawa, On a harmonic solution of $x'' + x + \mu x^2 = \varepsilon \cos \omega t$, Math. Japon. 13 (1968), p. 143-148.
- [7] R. Narasimhan, Analysis on real and complex manifolds, Studies in Pure Math. Vol. 1, Masson, Paris, North-Holland, Amsterdam 1968.

UNIVERSITY OF ALBERTA UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF MINNESOTA