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Periodic solutions of 2" +f(u,x) =0

by G. J. BUuTLER* and H. I. FREEDMAN** (Alberta)

Abstract. An examination is made of those regions (called admissible sefs) in
the (u, 4)-plane for which the initial value problem z'*(t)+ f(u, z(t)) = 0, z(0) = 4,
x’(0) = 0, hag a non-trivial periodic solution. In particular, results obtained previously
for the case that fis linear in u are gencralized to the non-linear case.

In addition, the converse problem is discussed in some detail, whence it is shown
how to construct differential equations having rather gencral sets in the (¢, A)-plane
as boundaries of their admissible sets.

1. Introduction. In [2], there was considered the problem of charac-
terizing the set of points (x, A) (the admissible set) for which the solution
of the equation

(1) 2" () +glo®) +uhlo) =0 (= djat

with initial conditions z(0) = 4, #'(0) = 0, is a non-frivial periodic
function. In this paper, we extend some of these results to the equation

(2) a" () +flp,2t) =0, x(0)=4, 2'(0)=0

and illustrate certain cssential differcnces that occur when f is non-linear
in u. We shall also be interested in obtaining some results of a converse
nature.

We shall use the following notation:

Fu,y) = [ flu, 2)dw,

& = {(u, A) € R*: (2) admits a non-trivial periodic solution}.

Throughout, we shall assume that f(x, ) is jointly continuous in
both variables and that solutions of (2) are unique, although continuity
in x will be relaxed in one case involving a converse theorem.
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By a periodic solution, we shall always mean a non-constant periodic
solution. :

Among the many other works devoted to the study of periodic solu-
tions to (2), we mention in particular those of Cesari [3] and Loud [5].

One could interpret x4 as a non-linear control; for example a know-
ledge of the admissible set might allow a path in the (u, 4)-plane to be
found permitting a transfer from & non-periodic orbit to a per-
iodic orbit.

In [2], a general criterion for the existence of a periodic solution
to (2) was given under somewhat weaker hypotheses on f, than in [3]
or [5]). We shall find useful a corollary of that result which we state with-
out proof as

LEmMMA 1. Let f(u, A) << 0 (f(u, A) > 0). Then a necessary and suffi-
ctent condition for the solution of (2) to be periodic is that there exist B > A
(B< A)suchthat F(u, 4) = F(u, B) > F(u,y) for A <y < B(B<y< 4).

A corresponding result has been obtained by one of the authors [1]
for certain equations of the form '’ -+ g(x)h(2'2) + f(u, ) = 0.

2. Admissible regions of the (u, A)-plane. If (u, A) e o/, we shall
say that (u, 4) is admissible for (2), and o will be called the admissible
set for f.

The following result generalizes the case that f is linear in x, which
was given in [2].

THEOREM 1. &/ is open.

Proof. Let (u,, 4,) € &. By Lemma 1, there exists By such that

Fugy Ay) = Fpg, By) > Fuo, ),

for y between 4, and B,, and we may, without loss of generality, assume
that B, < Ay, so that f(ue, By) < 0 << f(pey A¢). By continuity, there
exists 0> 03 f(u,B) < —0, <0< § < f(u, A) whenever (u, A) and
(u, B) are sufficiently close to (ug, Ay), (@, B,), respectively. Further,
by the implicit function theorem and the fact that f(u,, B,) # 0, it follows
that

Fu, A) = F(u, x)

has a unique solution x = B = B(u, A) for (u, A) sufficiently close
t0 (1, Ag) such that B(u, A)— By, as (u, A) = (ugy Ao) and Flu, 4) =
F(u,B)> F(u,y) whenever B <y < A, and the proof of the theorem
is complete.

3. Description of the boundary of /. As in [2] we introduce the
following classification of the boundary points of /. Let (u,, 4,) € d..
We shall say that (u,, 4,) is of type I if f(u,, A,) = 0, is of type II if it
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is in the closure of the set {(u, A) € 0&/: there exist B # A such that
F(u,B) = F(u, A) and f(u,B) =0, and (u, A) is not of type I}, and
is of type IIT if it is in the closure of the set {(u, A)edof: F(u, 4A) >
F(u,y), either for all y > 4 or for y < 4, and (x, 4) is not of type I
or II}.

That this gives a complete classification of the boundary points
of & is indicated by

THEOREM 2. Let (ug, 4,) € 0. Then (uq, 4,) ¢8 one of the types I, 11
or III.

Proof. This follows along the lines of the proof for the linear case.
See [2].

In [2], suitable hypotheses were given to ensure that boundary points
exclusively of one of the types I, II or ITI were interior to a continuous
arc of such points. Again, for f non-linear in u, analogous results hold
true, the proofs requiring merely a straightforward adaptation of those
given in [2] and we obtain

THEOREM 3. In parts (a), (b) and (c), assume that (uy, A,) is a bound-
ary point of o, exclusively of types I, IL and 111, respectively.

(a) Suppose that f, exists as a continuous, non-vanishing function of
(uy A) in some neighbourhood of (uy, Ao). Then (g, A,) 98 relatively interior
to a continuous arc of boundary points exclusively of type 1.

(b) Suppose that f, and f, exist as continuous, non-vanishing functions
in some neighborhood of (u,, B,) (see definition of type IL for meaning of B,).
Assume, in addition, that

Ly
f fp(,um y)ay # 0.

Ay

Then (p,, Ay) 18 relatively interior to a continuous arc of boundary points
exclusively of type II.
(c) Define G(u) to be limsupF(u, y). Suppose that G, and F, exist

as continuous functions in ngz'ghbou-rhoods of uy and (ue, Ao), respectively,
with G, (o) # F, (1o, Ag). In addition, let F(uy, Ag) > F(u, ) for all
x> Ay. Then (uy, A,) is relatively interior to a continuous arc of boundary
points exclusively of type IIL.

For certain cases of equation (2), the boundary curves may be ex-
plicitly parameterized. For example, for the cquation

@ +o+uzt =0, x(0)=A4, a'(0)=0,

the boundary curves of type II are the branches of the hyperbola uA
= ¢ [6].
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In [2], this monotone behaviour of type II curves was shown to hold
for more general equations of the form (2) with f linear in u. Here we
shall further extend this result for f non-linear in wx. The proof is based
on that given for the linear case. We shall sketch the proof, giving the
necessary modifications.

THEOREM 4. Assume that f(u,x) is continuously differentiable with
respect to u for each x, with f,(u,x) > 0 for all (u, ) and that there exists
@&, A such that (z—A)f(x, ) > 0 for v # A. Let (uy, 4;) be a boundary
point of type 1L but not of type 111, with uy > i, Ay > A. Then there exists
a continuous strictly decreasing arc

I =g, Aw): po<p<u’

of such points, with lim A (u) = 0 if the mazimal interval [u,, u*) of definition
of the arc is finite. o

Proof. Since (u,, 4,) is of type II, but not of type III, there exists
B, < 4 such that F(uy, By) = F(u,, Ay) > F(uy,y) for B, <y < A,
and f(u,, By) = 0. The conditions of the theorem imply that f(u, B,) > 0,
for u > p,, and so, provided there exists' B with B, < B < A4 such that
F(u, B)> F(u, A), we may define B(u) (for u,<u < u*, say) to be

sup{y: By<y< A and F(u,y) = sup F(u,B)}.
By<B<A4
We have B, < B(g) < 0 and f(u, B(u)} = 0. B(u,) is equal to B,. B(u)
is non-decreasing; for let p, < u, < p, < p* and let B(y;) = B;. Suppose
that B, > B,. Then F(u,, B,) > F(u,, B,) (definition of B, = B(u,)),
which inequality may be written

By By
(3) [ 10, 2@ > [ (f(pe, @) —f(0, z))da.
B, B,

However, using the condition on f,,

flugy By) < f(ugy By) =0
and so

F(uyy Be) < S“P_F(}“u y) = F(uy, By).
Bo<U<A
Therefore

By
@) [ f(0,)dz
B

B, B
< [ (fluy @)=F(0, 2))dm < [ (flgs, ©) —F(0, 2))do
By By

again using the condition on f,. This contradicts (3). Thus B, < B, and
B(u) is non-decreasing.
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The next step is to show that ¥ (x, B(u)) is continuous as a function
of u. This is a straightforward copy of the argument given in the linear
case and we omit the details. That the equation F(u, 4) = F(u, B(u))
has a unique solution also follows straightforwardly using the argument
for the linear case, as does the continuity of A = A (u).

We then have for o< < < ff (> 9)dy = ff(yz, y)dy
<ff(,u1,y)dy (condition on f,) < ff ,ul,y (deflmtlon of B)) =
A

A T
fl f(p1, ¥)dy. The conditions of the theorem imply that f flu, y)dy

1s increasing in both x and x whenever x> A4, and so A, < A,. Thus
A (p) is strictly decreasing in (g,, #*). Finally, the behaviour of A4 (u) as
u — u* may be verified just as in the proof given for the linear case.
As an analogue to Corollary 2 of [2], we have
COROLLARY. The energy function F(u, A) s (strictly) decreasing
along the arcs of type 11 defined in the above theorem.

4. Isolated boundary points for f(u,2) linear in u. The question
occurs whether or mnot there can exist isolated boundary points
of &. We shall see in the next several sections that there can in
general, but we show here that in the case f(u, x) is linear in x isolated
boundary points of &/ are impossible.

THEOREM 5. Let f be continuous in x and linear in u. Then there are
no tisolated boundary points of .

Proof. Let (u,, 4,) € 0o/, Write f(u, x) = g(x) 4 ph(x). If f(uy, 4,)
= 0, either the line A = A, (in the case h(4,) = 0) or the arc u =
—g(4)/h(4), A in a neighbourhood of A4, (in the case h(A4,) # 0) is a
curve of points in the complement of /. Clearly, then (u,, 4,) cannot
be an isolated point of 0.«.

Henceforth, we may assume that f(u,, 4,) % 0; without loss of
generality, we shall suppose that f(u,, 4,) > 0. Consider the set

S = {y < Ay: F(puy,y) = F(uo, 4p)}-

(i) If 8§ is empty, then F(uy, 44) > F(u,,y) for all y < A, and,
therefore,

Fug, A) > I(po, y)

for all y < A, for values of A in some sufficiently small right neighbourhood
of 4,. For such values of 4, it follows that (u,, 4) is in the complement
of o and again (u,, 4,) cannot be an isolated point of 9..

(i1) If S is not empty, let By = supS. Then B, < 4, and
Fuoy By) = Fug, Ao) > F (100, y)

3 — Annales Polonici Mathematici XXXVI.1
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for B, < y < A,y. Since (u,, B,) ¢ &/, we conclude that f(u,, B,) = 0 and
arguing as at the beginning of this proof, there exists a non-trivial arc €
which contains (u,, B,) such that f(u, B) = 0 for (4, B) € ¢. If the per-
pendicular projection of € on to the u-axis is not the singleton {u,}, then
using continuity considerations and the fact that f(x, 4) is bounded away
from zero in a suitable neighbourhood of (u,, 4,), Wwe deduce that there
is a non-trivial arc %' through (u,, 4,) such that for each (u, 4) € %,
there exists (z, B) € ¢ (same u) such that ¥(u, B) = F(u, A). Choosing
y = B* = B*(u), as large as possible in the interval I = [B, }(4,+ B)],
to maximize F(u,y), ¥ € I, we see that B* — B, as (u, A) — (u,, 4,) along
the arc ¢, and f(u, B*) = 0. Since F(u, B*) = F(uo, By) = F(p, 4,)
as (u, A) > (po, 4,) along €', we may find an arc ¢ through (u,, 4,)
with F(u, B*) = F(u, A), for all 4 with (u, A) € ¢"'. (Herc we are using
the fact that f(ue, 4,) > 0 to assert the existence of ')

The behaviour of f(z, A) near (u,, 4,) indicates that for (u, A) € ¢”
sufficiently close to (u,, 4,), We have

F(F’B*) = F(u, A) > F(u,y)

for B* <y < A. Since f(u, B*) = 0, it follows that these points of ¢”
are in the complement of </, and (u,, 4,) is not an isolated point of 0.«.

Finally, we must deal with the case that ¢ projects on to {u,} on the
u-axis. Then u, = —g(B)/h(B) for B in some neighbourhood of B,. For
such B and either for all 4 > g, or for all u < y,, we have f(u, B) = g(B)+
+ uh(B) > 0. For such values of x, choose y = B* as above and construct ¢
as before.

This completes the proof of the theorem.

In the remaining sections of this paper we examine the conditions
under which an equation of the form (2) can be constructed having a given
set imbedded in the boundary set of <.

5. Converse theorems for type I boundary points. We are interested
here in discussing the problem of when a given set in R? can be consider-
ed the type I boundary of the admissible set of some equation of the
form (2). We first consider sets which do not contain any vertical segments,
that is line segments parallel to the A-axis.

THEOREM 6. Let I be a closed set in R? with empty interior and no
vertical line segments. Then there is a function f(u, ), locally Lipschitzian
in p and in o such that the boundary of o is Z = I'U(u-axis).

Proof. Define ¢(x, ) to be ¢((#, ), I'), where ¢ is the Buclidean
distance function in R2 Then ¢(u, ) is Lipschitzian in R? and its zero
set is I', whereas ¢(u, z) > 0 for (u, ) ¢ I

Let

(5) D(u,2) = [ o(u,y)dy,
0
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and

(6) D(p,z) = ot (@(n, 29) =P, v)
and also

(7 & (u, ®) = min (D(u, ), 1).

The hypothesis concerning vertical segments implies that @ (ux, #) is never
zero for x # 0. Now we define the weight function w(u, ) by

@
8 w x) = =
o ) = e B, e
where

(#*—1)%, |oi<1,
9 xr) =
(9) p () 0, o> 1.

We can now take f(u, #) to be defined by

(10) flu, @) =w(u, v)p(u, ©).

Clearly zf(u, x) > 0 for all # with equality only for # = 0 or (u, ) e [,
that is, the zero set of f(u, ») is Z. '\Tow we show that the theorem will

follow from lim ffy, ydr = lim jf u, x)dx = - oo, For since xf (u, )

T—>+00 0 I—>—00 0

>0, (u, A) fails to belong to « iff either (4, A)eZ or (u, A) ¢ Z and
F(u, A) = F(u, B) for some (u, B) € Z. Denote by Z' the set of (u, A)
for which the latter alternative holds. It is easily seen that the divergence
of the above integrals will imply that ZUZ’ is closed. (Z' will in fact com-
prise the type II boundary points of «.)

Suppose (u,, 4,) €Z'. Keeping for the moment u = po fixed and
regarding f(u,, x), F (e, x) as functions of z, we have F_ (uy, 4,) =
fluoy Ag) 0 and so the image of any neighbourhood of 4, under the
map F(uy, ) has positive Lebesgue measure. However, F is continuously
differentiable and we may apply Sard’s theorem [7] to obtain the result
that the image of the critical set of F (4., ), and hence of the set of 4
for which F(u,, A) = F(u,, B) for some B in the critical set, has measurc
zero. It follows that Z' is nowhere dense. Thus the complement of & =
ZJUZ' has mnon-empty interior and is therefore the boundary of «.

T
To complete the proof, therefore, we need to show that lim [f(u, z)de

T T—>+00 0
= lim [f(u,o)ds = +oo. But for x> 2,
r——o00 0
Jf(p,y j (s, 9) dy—fw(u,y)wﬂ,y )ay
0 z
—f q, eu,y) y/f ———(p,y)dy.

‘p.“:y)
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)

Now for iz <y<w Pu,y) <Pu,2)—P(u,tzr) and so

[ oty > - [ oty — 2

Henee lim [ f(u, y)dy = +oco. Similarly lim [ f(u,y)dy = + oo.
z-»00 0 r—>—o0 0

We note that this proof was constructive in the sense that we actu-
ally showed how to construct the f(x, #). We note also that for the equa-
tion so constructed, the admissible set has no boundary points of type III
and its boundary points of type I consist of I" and an additional hori-
zontal line.

We now consider the case when /' has vertical seginents. We write I”
as I''UTI,, where I'; is the closure of all points in I” which do not belong
to vertical segments. To obtain I', we proceed as follows. Let I'; be the
set of (u, ) € I' such that (u, ) belongs to a vertical segment, and let
II(T'}) be the projection of I'y on the y-axis. Then I'y = {(u, #): (u,x) el
and u € IT(I'y)}. Thus I', consists of I'; together with all points in I', whose u
values are the same as those in I';.

THEOREM 7. Let II(I';) be nowhere dense. (a) Then there exvists f(u, x),
continuous in u and Iipschitzian in x such that the type 1 boundary points
of o are I'yUIT ' (closure of I';) U (u-axis). (b) There exists f(u, %), Lipschi-
tzian in x (but discontinuous in u) such that the type 1 boundary points
of o are I'}U(closure of I',)U(u-axis).

Proof. Let ¢(u, ®) and w(u, #) be as in Theorem 6 substituting I,
for I'. Denote the closure of a set S by S.

(a) Defining f(u,x) = w(u, ©)p(u, x)o(u, I(I,)) clearly gives the
required result, since if u ¢ II(I%), =f(u, ) > 0 as before except when
(#,2) eI, or # = 0, whereas if u e II(I,), f(u,x) = 0, for all .

(b) Define yx(u,x) by

0, p ¢ I(TYy),
o((u, @), T, well(I).

Then f(u, ) = w(u, z)p(u, x)o(u, II(Iy))+ x (1, w) is the required func-
tion. Clearly if u ¢ II([;), then ¥ = 0 and arguments analogous to those
used in Theorem 6 prevail. If uell(I',) and (u,x) ¢ IT2 , then f(u,®)
= (4, ®) > 0. If pell(ly)and (p,)el, then f(u,z) = g(u,x) =0.
Further, since I7(I',) has empty interior, then each point in I', is the limit
of a sequence of points in the admissible set. Hence I'y, forms part of the
type I boundary proving the theorem.

1w, @) =
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6. Converse theorems for type II boundary peints. Again we suppose
that we are required to find an equation of the form (2) so that a given
set I" forms at least a subsct of the type II boundary points of /. We
shall assume that I" is given as the zero set of a certain function ¢(u, ).

Consider first the case that (u, A) e I'iif A = a(u) for some u-do-
main D, and we assume that a may be extended, if necessary, to the
real line. We search for a function f(u, ) for which

(11) Flu,x) = w(u, 2)p(u, 2)+clu),

where w and ¢ will be appropriately chosen so that the energies F(u, 4),
F(u, B) are matched, where B = B(u), x € D, and (u, B) is the point of
type I associated with (u, A) (sec the definitions at the beginning of
Section 3).

Since F(u,x) = [ f(u,y)dy, we require 0 = F(u,0) = w(u, 0)+
0
+o(p, 0)+¢(u), so that

(12) F(p,x) =w(p, z)p(p, ) —w(p, 0)ps, 0).
The energy-matching condition requires that
(13) w(p, B)p(u, B) = 0.

However, we must have ¢(u, B) # 0, otherwise (u, B) would be in I
Hence

(14) w(u, B) = 0.

Moreover, for (x4, B) to be type I and (u, A) to be type II, we need
(15)  flu, B) = F,(u, B) = w(u, B)p, (4, B)+w,(u, B)p(u, B) =0,
(16) f(p, 4) = Fylu, 4) = w(p, A)p,(u, A)+w,(u, A)p(p, 4) #0,

leading to the conditions

(A7) we(p, B) =0, w(u, A)p.(p, A) #0.

So we shall require that for a fixed x, A is at most a simple root of ¢(u, )
= 0 and B is at least a double root of w(u, #) = 0. Accordingly, we choose
w(u, z) to be (x — B)? and we shall take B = B(u) < a(y) = A. From (12),
we have

flu, @) = [@—B(w)2+2 (2 —Bu) (v — aln) = (2—B(u) (22— aln)— B(w).

Since f(u, ) <0 for f(u) <@ < }(a(u)+p(u) and f(u,z)>0 for
3a(u)+B(w) < @ < a(p), whereas 0 = f(u, B(u)) < f(u, a(u)), it follows
from Lemma 1 that (4, a()) is a type II boundary point (and (u, ()
is a type I boundary point). Thus we have proved
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THEOREM 8. Let ¢(p,2) = z—a(u), w(p,x, B) = (z—f(u))%, where
B(p) < a(u) are functions of u on the real line and let I' be the zero set of ¢
restricted to some u-domain D. Then for f(u,x) = F, (u, x), where ¥ (u, )

is given by (12), I' is a subset of the boundary points of o of type I1.

We now seck to extend this to the case where ¢(u, #) is & produet
of linear functions.

k
THEOREM 9. Let ¢(u,x) = |](v—a;(n)), where a;(p) < as(p) < ...
1=1

oo K ag(p), and let I' be a subset of the zero sel of ¢. Define w(u, x) to be
[(%+1)/2]

(=1 1 (o—B;(w))? where the p; are functions of u satisfying

i=1
(18) () < By (1) < ap (1) < a5(p) < B(p) < @y (1) < a5() < By(p) <
the sequence of inequalities terminating with

C Koy (1) < Bup) < a(p), K even,

C K Gy (B) < By (B) < gy (1) < o) < Bygeany(w), kb oodd,
and any equality holding on at most an isolated set of values of u. Then the
conclusion of Theorem 8 holds.

Proof. Again we may usc (12) to write

[(k+1)/2]

fluya) = (=1F [T (e—pw)vlu, =

j=1
where
[(k+1)2] [(k+1)/2) k
piw.a) = > [] 2e—gw) ][] le—amw)+
=1 ;:ll =1
[(k+1)/2]

+Zn(~v—a(u) ]_] (v~ B;(w))-
=1 i=1
Tl

We note that y(u, #) is a polynomial in = of degree k+[(k+1)/2]—1,
and hence the number of sign changes as a function of x is at most
k+[(k+1)/2]—2.

Next we evaluate y(u, a,(4)) and p(u, B, (g)),m =1,...,k;n =1, ...
o [(k+1)/21,

m [(%+1)2]
Y (ﬂ’ am(nu)) = ” (am (/‘) - ai(;u'))' ” (am(lu') - [3]([4)) .
=1 i=1
iE<m

Hence, whenever strict inequality holds throughout (18), we have

SENY (i @y () = (—L)F"-(—L)E+DRI-EnE] . (_q)l0=REk L-mi)
[(k+1)/2)

ol i) =2 ] (a1 By00) [ (Bat0)— et

i=1 =1
i#n
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Thus, whenever strict inequality holds throughout (18), we bave
8gn Y (i Bu(w) = (—1)F2H (= 1)+ 0 _ (_q)l0-RIz=ni1,

Now consider the signs of y evaluated at consecutive terms of the

Upg s K gy < fs < O < Qog iy

Suppressing the constant factor (—1)10~%/2 the signs are, respective-
ly, (=1)""% (—=1)75 (—1)~*", (=1)7% (—21)"°"' Thus as we progress
through the sequence, the signs alternate, giving at least k4 [(k+1)/2] —
— 2 changes of sign. Since we have noted above that this is the maximum
possible number, there are precisely this many sign changes, and by
virtue of the factor (—1)* occurring in w(u, #), the conditions of Lemma 1
are fulfilled for each value of z between each adjacent pair a;(x), B;(u),
and the theorem is proved.

Remarks. We note that for the function f constructed in the proof
of the theorem, the zero set of ¢, and the type IT boundary set of & coin-
cide, provided that ¢ is continuous. It is not difficult to see that we may,
with only slight modifications in the construction, handle certain func-

k m
tions ¢ of the form ¢(u, ) = ]:] (@ — a;(p)) le [(& — B; ()2 +7;(w)] which

will allow us to obtain examples in which the boundary points of type II
include isolated points (in contrast to the situation where f is linear in g,

as in Theorem 5) or may include closed curves. We believe that it should

n .

be possible to realize the zero set of any function ¢(u,x) = D ¢;(u)2’
=1

as the type II boundary, provided that the ¢; are continuous and, except

for an isolated set of values of u, the roots of ¢ (as a function of x) arc

simple, but have been unable to obtain a result of this generality.

7. Converse theorems for type III boundary points. Since a type IIL
boundary point requires of the energy function a certain asymptotic
bebaviour as z approaches either + oo or — oo (or both) there can be at
most two type III boundary points for each fixed u.

In the next two theorems we show how to construct f(x, x) generating
one and two such boundary curves, respectively.

p
THEOREM 10. Let 8 > 0 be the solution of [ we” dw — }. Then equation (2)
]
with
&+ B — a(p))e=P=ow »< a(u)—p
) S = e ’
2@+ B —a(u)e™ =, 2> a(p)—B,

has A —a(u) = 0 as the type 111 boundary curve.
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a(p)
Proof. 4 —a(u) = 0 is 2 boundary point of type IIL if | f(u, z)d=z
1]

=—fmf(;c,m)da:, since by (19) f(u,2) < 0 for # < a(u)—p and f(u,x) > 0
0
for © > a(u)—f. But

—-® a(u)—f —-.oo
[ fp,oydw = [ flu,o)do+ [ (©—a(p)+pe W de
¢ 0 a(u)—- B

— 0

ZF(‘“a a(/")_ﬂ)"i‘f ye'dy = F(Mf a(i“)_ﬂ)‘}'l!

a(u) ol u)

[ flu,0)dz = Fu, a(p)—B)+ [ 2(x—a(p)+ple "W+ de
0 a(u)—-A

;]
= Fu, a(u)—p)+2 [ye'dy = F(u, a(u)—p)+1.

This proves the theorem.

THEOREM 11. Given a,(u) < a,(u), with equality on at most an isolated
set, there exvists k> 0, 5, > 0, B, > 0 such that equation (2) with

(20)  f(u,®)
(a"_al(ﬂ)+.31)ez_"l(ﬂ)+ﬂ'1 < ay(p)—pByy
k(a’_ a;(p)+ ﬁl) (-” — 3ay(u)— %az(ﬂ)’ (w —ay () — ﬂz):
ay () =By < @ < ay(p) + By
(a’ —ay(u)— /32)3—I+a2(")+ﬁ2, oy (u) B < o,

has the zero set of (A —a,(u)) (A — a,(u)) as the type III boundary of of.
Proof. Define %(r, s, t), v(r,s,t) by

T
u(r,s,t) = [ty(y+a,—ay—r—8)(y+ ta,— ya,—7)dy,
0

-8
v(r, 8,1) =f Wy —a+ay+r+8)(y—ae;+Ja+8)dy.
0

Then % and v are continuous functions from R? to R', such that «(r, s, 1)
= tu(r, s,1),v(r, s,t) = to(r,s,1).

Now for any fixed positive value 8, of s, we have u(0, 8,,1) = 0,
u(r, B, 1) is of order +* for large positive values of r, and v(0, §,,1) > 0,
v(r, By, 1) is of order r for large positive values of r. Therefore there is
a value §, > 0 of r for which % (8,, f,,1) = v(f8,, B, 1), and the homo-
geneity of u, v with respeet to ¢ allows us to choose a value %k of ¢ for which



Periodic solutions of ="'+ f(u,z) = 0 41

u(By,y B2y k) = v(By, B2, k) = 1. Now the remainder of the proof follows
along the lines of Theorem 10.

Remarks. We have already observed that for any set which is a type
ITI boundary of an admissible set <7, the intersection of that set with any
line perpendicular to the u-axis is necessarily empty, a singleton set or a
doubleton set. (The set must also be closed, by definition.) Conversely,
given any such set I, we may embed it in the image of two arcs a,(u),
a,(pu) with a,(u) < ay(u) for all ¢ and apply Theorem 11 to show that I
may be realized as a subset of the type IIT boundary points of an admis-
sible set .

We have not said much about the smoothness with respect to u
of the functions f(u, #) that we have constructed in the converse theorem,
but it is clear, at least for these constructions that the smoothness is
linked with any regularity conditions with respect to u that we impose
on a set I' of boundary points of the appropriate type.

In conclusion, we remark that the results of Sections 5-7 make it
clear that there is a great generality in those closed sets which may be
realized as the set of boundary points of some admissible set of a partic-
ular type, somewhat contrasting with the situation when the dependence
of the parameter p is linear.
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