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LITTLE’S FORMULA FOR WORK-CONSERVING NORMAL
G/G/1 QUEUES IN SERIES

1. Introduction. In this paper we deal with a single server queue which
Operates according to a work-conserving normal discipline. In Section 3
we give a definition of this discipline convenient for further considerations.
We say that in the queue which operates according to a work-conserving
normal discipline the knowledge of the generic sequence in a busy cycle
is sufficient to determine the waiting times of customers in this busy
cycle. The well-known disciplines as first-in-first-out, last-in-first-out,
shortest remaining processing time, round robin, instantaneous feed-back
are work-conserving normal ones (for definitions see, e.g., [2], [5]).

The relations between the time average of the number of customers
L in the queue, the arrival intensity A~!, and the average sojourn time
v in the queue, of the form L = Av, have been investigated for single stable
Queues with various queue disciplines. This kind of relations is called
Little’s formula.

Our aim is to prove Little’s formula for single server queues in series
Which operate according to work-conserving normal disciplines.

Following Stidham [6] we use the sample path approach to the prob-
lem. The methods used are simpler than those given in the papers which
use the theory of point processes.

2. Assumptions and notation. We use the following notation:
{t,,m >1} — sequence of arrival moments;

{t.,m>1} — sequence of departure moments;

{w,,n >1} — actual waiting time process;

8, — service time of the n-th customer;

v, = 8,+w, — sojourn time of the n-th customer;

T, =t,,—t, — time between the n-th and (n-1)-st arrival;
T, =t,,,—t, — time between the n-th and (n-1)-st departure;
{L(t),t> 0} — queue size process;
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14
L = lim ¢! f L(s)ds — time average of the number of customers
0

{—00

in the queue;

n
= limn‘IZT,- — arrival rate;

n

v = lim fn‘lzfv,- — average sojourn time in the queue.

n—>00 i=1

We assume that both S, and T, are non-negative and finite. Then
in any realization the values of S, and T, for all n, together with the in-
itial conditions, determine completely the development of the queue.
The basic assumption is that {(T,, S,), » = 1} forms a strictly stationary
ergodic sequence.

According to Breiman [1] the stationary process {(T,, S,),n =1}
may be extended to a stationary process {(T,, 8,), — o0 <n < oo} which
is again ergodic. Suppose this has been done. Then {(T,, S,),n > 1} is
called a generic sequence.

From now on, all random variables are considered to be functions
on a single fixed underlying probability space .

The assumption that the sequence is ergodic is not necessary, but
allows us to avoid irrelevant details in the proofs and undue complication
in the statements of the theorems. It seems in any case a reasonable as-
sumption in practical situations. When the sequence {(7,, 8,), » =1} is
not ergodic, the limit

n—00

n
» = lim n‘lzfv,-,
in1

given by the ergodic theorem, is no longer constant but a random variable
E(v,|1,), where I, is the o-field of invariant sets.

We use the well-known property that busy eycles are the same for
two queues with a common generic sequence, the first operating according
to a first-in-first-out discipline and the second according to a work-con-
serving discipline.

We assume that at the beginning the queues are empty. A queue
which is not empty works.

Denote by {#,,n =1} and {L*(t), > 0} the stationary waiting time
and the stationary queue size process, respectively.

We write WCN queue and FIFO queue for the queue which operates
according to work-conserving normal and first-in-first-out disciplines,
respectively.

3. Preliminaries. In this section we recall some properties of FIFO
queues. Then for an arbitrary WCN queue we construct a FIFO queué
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which has the same arrival and departure moments. In the next section
this queue will be used to show the validity of Little’s formula for the
WCN queue.

For FIFO queues we have the following lemma:

LevMA 1 (Loynes [3]). Let the random variables w, (n = 1) be related
by the transform

(1) Wpy1 = max (0, wn+sn_Tn)’

where {(T,, 8,),n =1} i8 a strictly stationary ergodic sequence for which
ES8, < ET, and w, = 0. Then there exists just one almost everywhere (a.e.)
 fimite strictly stationary ergodic sequence of random variables {, , — co < n < oo}
such that

©,,, = max(0, w,+8,-T,).

Furthermore, @, is the minimal sequence satisfying (1) for all n, w, is
such for n > 1 in the sense that if {x,} is another such sequence, then x, > W,
= W,

We write

a, =inf{i>1:w; =0} and a,,, =inf{i >a,:w; = 0}.

The sequence {a,,n > 1} denotes consecutive indices of customers
arriving at the empty queue. Note that under the assumptions of Lemma 1
the random variables a, are finite a.e. From Lemma 1 it also follows that
W; = w, a.e. for i>a, (see [3]).

Let
Cp, = tan+1—tan1 kp, = apy1—ay,
0 for w, #0,
"1 for @, = o.

The random variable C, is called the n-th busy cycle.

Suppose that the random variables a, are finite a.e. for all n. Since
both the work-conserving and FIFO queues have the same busy cyeles,
Provided they have the same generic sequence, we can define a work-con-
Serving normal discipline.

Definition. A work-conserving queue discipline is called normal if
there exists a sequence of real Borel functions {g,,n > 1},

ot (R X R )"—>RY,
for which

(2) ('wan’ ceey w°n+1"1) = ‘Pkn((Tan’ Sa")a ceey (Tan_H-—M S°n+1—1))
a.e. for all n.
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The class of WCN queue disciplines was introduced by Rolski [4].
e recall a property of a WCN queue proved by him.

LeEMMA 2 (Rolski [4]). Let the random wvariables w,, be related by (2)
for n>1, where {(T,,8,), —oco <n < oo} is a strictly stationary ergodic
sequence for which ES; < ET,. Then there exists a strictly stationary ergodic
sequence of random variables {w,, —oco < n < oo} satisfying (2) for all n
and such that the sequence {(T,,8,,W,), —oo <mn < oo} s strictly
stationary ergodic.

Rolski [4] proved also that there exists a strictly stationary WCN
queue size process {L*(f),te R}. Consequently, note that for

i—1
L, = int{t >0: L*t) = 0}, o =inf{i>1: ) T, > L},
k=1

Ly, = inf{t > 1, : L*(f) = 0}
we have

-1

Uy = int{i > 0y Y Ty > L)
k=1

Consider an arbitrary WCN queue. By the following lemma we can
construct an FIFO queue which has the same consecutive arriving and
departure moments.

It will be convenient to use the symbols wf and ST for the waiting
time and the service time, respectively, in this FIFO queue.

LemmA 3. Let {(T,, S,), — o < n < oo} be a strictly stationary ergodic
sequence for which ES, < ET,. Then there exists a strictly stationary ergodic
sequence {SE, —co <m < oo} such that comsecutive departure moments
from the FIFO queue with the generic sequence {(T,, St), —oo < n < oo}
are equal to those from the WCN queue with the generic sequence {(T,, S,),
— oo < 1 < oo}, Furthermore,

lim n7'wf =0 ae. and w

n—>00

F

F
n n

= W, for n>=a, a.e.

Proof. For a fixed o € 2 such that the sequence {w,,(w)} satisfies (2)
for all m and = €{a;,...,a;,,—1}, where ¢>1, there exist indices
il, 7;2 € {ai’ caey a.i+1-'1} suCh tha:t

2
— Z Ty+v,—v;, for i, >,
j=il+l

T, = (t;, +0;) — (t, +v,) = i
Z Tj+v, —v, fori,>14,.

.'iﬂf2+l
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From the equalities
v, = W, + S n

(wai’ A wa‘i+1_1) = ¢ki((Tui’ Sai), R (Tai+1—l’ Sai-l-l_l))

we infer that there exists a measurable mapping fk,- for which

B)  (Tagyeoer Tapy 1) = Figl(Tags By oy (T 11y S, 1)

From Lemma 2 it follows that there exists a strictly stationary ergodic

sequence {T, —co < n < oo} satisfying (3) a.e. for all 5. Note that T, = T,
for n > a,.

For all ¢ put
(4) (Sf‘,’ . z_,_1—1) = ( a;y T, +17 ceey Ttlzi_l_l—l)’
Wwhere
k
of = w8+ D Ty
J=a;+1
?:nd k denotes the index of the customer which first completed the service
In the ¢-th busy cyecle.

From Lemma 2 it follows that there exists a strictly stationary ergodic
Sequence {SF, — co < i < oo} satistying (4) for all <. Note that the sequence
{T, 8, —0o< i< oo} is strictly stationary ergodic.
~ Letusput vy = t,—*,. Forn € {a;, ..., ¢;;, —1} there exists an index
Y €{a;, ..., a;,, —1} such that

‘1
v, + ZTJ' for n <1,,

S

n
Vg, — Z T; for n>1,.
J=iy+1

The same argument as before shows that there exists a strictly stationary
ergodic sequence {#X, —oo <m < oo} such that of = 6y for = > a;.

Set @Wf = oF — ST, Then the sequence {i@y, —oco < n < oo} is strictly
Stationary ergodic.

Note that ESF < ET,. For a contradiction, assume that EST > ET,.
Then either E ST < oo, which yields

lim n~'w? = max(0, EST —ET,) >0 a.e.,
n—00
or ESY = o, which yields
Lim n~'wf = o a.e.

N—>»00

Both cases contradict the fact that wY = 0 infinitely often a.e. (a, are
tinite a.e. for all n).
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4. The single server queue. We consider now a single server WCON
queue. In the following lemma we prove that the average sojourn
time in the WCN queue equals that in the FIFO queue constructed in
Section 3.

LeMMA 4. Assume that the WCN queue has the generic sequenmce
{T,,8,), —cc<m< oo} strictly stationary ergodic and such that
ES, < ET,. Then

n n
limn! Y oF =lima~! ) o, a.e.
1 1
n—>00

n-»00 t=1 i=l1

Proof. Write D; = {a;,..., a;;,; —1}. First we prove the equality
(for a fixed w € 2 as in Lemma 3)

Do = 2'0,-.

jeDy jeDy

Assume that the customer which departed as the n-th in the i-th busy
cycle is the =, (¢)-th arrived. Note that

n(0) = (m(3), ..., m,(3))

is a permutation of the set D;.
Moreover, we have

’v,,j(,o) _Tuj(i),j fOI' j > 7‘, ('I;) 9

(5) oF = . .
i Vi +Tj,nj(i) for m(¢) >j,

j
m=i+1
We can write n(¢) as a finite composition of transpositions:

(%) = P10 v OPpy-

In the next part of the proof we use induction. Assume that z(¢) = p,.
Then there exist indices 7,, %, € D; such that 7, <4, and 7 (1) = 1y 7, (1)
= 4,. From (5) we have

F

F _ . F __ . ..
v, = ”f2+Til,i2, v, = 'vil_Til,iz’ Vi =5, ) ¢ {019 92} -

Hence

21}}" = Zvj.

jeD; jeD;
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Assume that @(¢) = 9,0 ... 0PpOPms = %(8)OPDpy,. Denote by #; the
quantities obtained from (5) after changing = (¢) into #(¢). By the inductive

assumption we have
2 6= 0

jeDy jeD;
There exist indices i,, i, € D; such that 4, <4, and

Fo_ ) F__ . ..
'v‘il - ﬁi2+Til,i27 ’Diz - ﬁil.—T’ilﬂ.z’ ,vJ - Y J ¢ {zl7 22}'

Hence
F__ F__
S-S ma o=
jeDg jeD; jeD; jeDy

Using the same argument for all ¢ we have

an an
a;? Z'vf' = a;! Zvi for all .
1:=ll1 'i=01

Since the equalities v, = %, and vf = ¢ hold a.e. for % > ¢, and since
the sequences {#,, — oo < n < oo}, {#, — oo < m < oo} are strictly station-
ary ergodie, both limits in Lemma 4 exist a.e. The limits are equal bécause
they coincide on the subsequence {a,,n > 1}.

THEOREM 1. Assume that the WCN queue has the gemeric sequence
{(T,,8,), —coc<n < oo} strictly stationary ergodic and such that ES,
<ET,. Then L = v a.e.

Proof. By Lemma 3 we have

limn~f =0

n->00

and the averages A and »* do exist. Stidham [6] proved that under these
assumptions the average L¥ exists and IL¥ = 1oF a.e. Now the equation
L = )y a.e. follows from Lemma 4 and the fact that LF (t) = L(t) for¢ > 0.

5. Single server queues in series. Let N be a fixed positive integer.
We say that N queues are in series if the customer passes in turn through
these quenes spending a waiting time and the service time in any particular
one, proceeding to the next succeeding queue immediately when the
Service time is completed.

Consider N of WCN queues in series. It is convenient to use the super-

23_1'(ipt i for the random variables describing the i-th queue, e.g., v, o},
? t).
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THEOREM 2. Let the sequence {(Th, 8L, ..., 8Y), —co <mn < oo} be
strictly stationary ergodic and such that ES} < ET: for ¢ =1,...,N.
Then L' = Av* ae. for ¢ =1,...,N.

Proof. From Theorcm 1 we have L' = A¢! a.e. By Lemma 3 there
exists a strictly stationary ergodic sequence {T},’, —oo< 1< oo} such
that TV = T for n > al. It is clear that T = T2. Hence T2 = T a.e.
for n > q.

The arrival intensity for the second queue is A~' because

hmfn‘IZ:T2 hmn“lt1 +1im »n~t0}F,
n—>00
and the second limit on the right-hand side equals zero by Lemma 3.

Let T2 = TV for all n. Then for n > a! we have T2 = T2,

The sequence {(T%, §2), — co < m < oo} is strictly stationary ergodic.
Consider the second queue with this sequence as the generic sequence.
Hence the equality L* = Av? a.c. follows from Theorem 1 and the fact
that T? = T? for n > o} a.e.

The argument can clearly be carried from queue to queue. Thus
the proof is complete.
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