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AND THE FOMIN H-CLOSED EXTENSION
BY
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Locally H-closed spaces, introduced by Obreanu [10], were recently
studied by Porter [11] with respect to their one-point H-closed extensions.
The aim of this paper is to discuss locally H-closed spaces and their Fomin
H-closed extensions. The paper contains a characterization of the Fomin
H-closed extension (Fomin [4]; see also Iliadis and Fomin [7]). The other
subject of this paper are various kinds of perfect maps, i.e., maps inducing
on appropriate extensions the maps transforming remainders into re-
mainders. It is proved, e.g., that perfect maps with respect to the Katétov
extension coincide with perfect maps with respect to the Fomin extension.

An ultrafilter means always a maximal filter in the family of filters
consisting of open subsets.

I wish to express my gratitude to Docent J. Mioduszewski for helpful
conversations during writing the paper.

1. Locally H-closed spaces. A topological space X is said to be locally
H-closed if it is Hausdorff and for each xe¢X there exists an open neigh-
bourhood U of the point x such that Clyx U is H-closed.

The property of the space to be locally H-closed is in general not
inherifed by subspaces, even if they are open or closed, in this case in
contrast to the local compactness.

Example. Let J be the natural topology on the open interval
J = (0, 1). Let I’ be the topology on J generated by the family I u{W},
where W is the set of all rational numbers on J. It is easy to see that
(J,7"') is locally H-closed. Obviously, J\W is closed but not locally
H-closed: no infinite subset of J\W is H-closed. Analogously, W is open
and not locally H-closed.

There exist even regularly open subsets of H-closed spaces which
are not locally H-closed.

Example. Let us describe the Urysohn example of a non-compact
minimal Hausdorff space. Let
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Xo = ({1’ ‘%7 %7 '-'}U{O}U{—]-’ '_%’ _%7 }) X{17 ‘;‘7 Elh }
and let
X =X0U{(—1’0)}U{(170)}°

Topology in X, is the usual product topology. Basic neighbourhoods
of point {(—1,0)} are the sets

1 1 1 1 1
0 U S S £ S M VP

and basic neighbourhoods of the point {(1, 0)} are the sets

V—l11 ><1 - 1 v{(1, 0)}
k — 72737"' k7k+17k_|_27"' , )'

The set

4 = {17 3,3, } X {17 3, 3 °"}U{(1’ 0)}
is regularly open in X and the subspace A is not locally H-closed. In fact,
the point {(1, 0)} has no neighbourhood whose closure is H-closed.

In the last section we show that the property of the space to be
locally H-closed is inherited by regularly closed subspaces.

2. The Fomin H-closed extension ¢X. Fomin in [4] constructed for
each Hausdorff space X an H-closed extension ¢X, known in the literature
as the Fomin extension. The Fomin extension of X is the set

(1) . G.X - XURX’

where Ry is the family of all ultrafilters without adherence points, en-
dowed with the topology generated by the sets o(U) = Uu{fe Ry:
Ue &}, where U is open in X, which form a base.

It is easy to check that X is a dense subspace of cX. The set ¢X of
the Fomin extension is equal to the set of the Katétov H-closed extension
X (Katétov [8]). The topology in 7X is stronger than that of ¢X. Hence
oX is H-closed whenever it is Hausdorff. Let us note that

(2) if U and V are open in X and UnV =@,
then o(U)Nno(V) =0,
which follows from the calculation:
o(U)Nna(V) =(UV{éeRx: Ue&})N(VU{leRx: Veb&})
= UNVU{éecRx: Ue&lN{tecRy: Ve&} =0

(because an ultrafilter does not contain disjoint sets).
The Hausdorff property for ¢X is a simple consequence of (2).
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LeMmMA 1. If U is open in X, then
(3) Cl,xU =ClxUu{ée Rx: Ue &}.

Proof. 1. The inclusion Clx U < Cl,x U is obvious. -

In order to prove the inclusion ClyUuU{ée Rx: Ue &} =« Cl x U it
suffices to show that {fe Rx: Ue é} < Cl,xU. Let £¢ Rx be such that
Ue ¢ and let o(V) be open base neighbourhood of £ Hence Ve & and
UnV #0@. Thus Uno(V) # O, which means that &£¢ Cl x U.

2. Let « be a point of X and x¢ Cl,x U. Then for each open set o(V)
such that zeo(V) there is o(V)NU #@. Hence UNV %« @ and zeV
and, in consequence, xe Clx U.

Let £e Rx and £e¢Cl,x U. For each Ve & the set ¢(V) is open base
neighbourhood of & and o(V)NU # . Hence, for each Ve &, VAU # 0O
and in virtue of the maximality of the filter &, we get Ue & Thus £e {ne Rx:
Uen} which ends the proof of the lemma.

CorOLLARY. If X is a Hausdorff space, then the remainder Ry of the
Fomin extension of X is 0-dimensional.

Proof. The family {o(U) "Rx: U is open in X} forms the base of
the topology in Ry . Therefore it suffices to show that ¢(U) N Ry is closed
in the remainder. By (3), there is

Cl,xU =ClxyUu{ée Rx: Ue&}.
Since X is dense in ¢X, we have
Cl,xo(U) = Clax(a(U)nX) =Cl,x U =Clxy Uu{ée Rx: Ue &}.
Hence
Cl,xo(U)NRxy = {éeRx: Ue &} =o(U)NRy
is closed in the remainder.

Note. Infact, we have proved that the remainder Ry is 0-dimensionally
embedded in o X (Flachsmeyer [3]), which means that there exists a base B
in oX such that for each Ue<®B the boundary of U lies in X.

Extensions uX and u'X are said to be equivalent if there exists a
homeomorphism A: uX — u’X such that h|X is the identity.

The following theorem gives a topological characterization of ¢X:

THEOREM 1. An H-closed extension uX is equivalent to the Fomin
extension oX iff there exists a base B in uX such that

(4)  for each V open in X there exists Ue B such that V = UNnX, and
Jor each UeB there is Cl,x U = UVClx(U NnX).

Note. Condition (4) can be reformulated in the form

(4')  for each V open in X there exists UeB such that V = UNX, and
for each Ue®B there is Bd,x U = Bdx(U nX),
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which is closely related to the known Katétov characterization of oX

from [8]. Characterization given in (4’) is more convenient for our purpose.
Proof. Sufficiency. If £¢ Ry, then let &, = {U: U open in uX

and UnNXe £} Since & is an ultrafilter in X and X is dense in uX, &,

is an ultrafilter of open subsets of uX. Consider the map ¢: ¢X — uX

defined by

(5)

p(x) =« for each zeX,

(&) =M {ClxU: UePF,} for each £c Ry

(the intersection is a one-point set, because J, is an ultrafilter).

The map ¢ maps remainder into remainder. In fact, suppose to the
contrary that for some &£e¢ Ry there is ¢(£&)eX. Then for each Ve £ there
exists Ue &, such that

9(£)e 0Ly UNX = Clg(UnX) =Cly V.

Since £ is an ultrafilter without adherence points, we have a contra-
diction.

Since different ultrafilters have different limits, the map ¢ is one-
-to-one.

In order to prove continuity of the map ¢ we show that for each
UeB there is

(6) {eRx: p(E)e U} = {£eRx: UNnXe &},

Let UeB. It suffices to show that ¢(&)e U iff UNnXeé.

If ¢(&)e U, then §, is the ultrafilter and, by (5), Ue .. Hence
UNnXe#% Conversely, if UnXe & then Ue . and, by (5), ¢(&)eClxU.
In v*.¢ue of (4), we get

p(£)eClx U =Clx(UnX)uUU.
Since @(&)e uX\X, @p(&)e U.
Let Ue®B. By (6) and (5) we have
¢ H(U) =UnXU{feRx: 9p(&)e U} = UNnXU{leRyx: UNnXe&}
= o(UNX).

Hence ¢: ¢X — uX is a continuous map.

The map ¢ maps ¢X onto uX, because ¢(0X) is closed in uX as a
continuous image of the H-closed space, X < ¢(0X), and X is dense
in uX. Now it remains to show that ¢ is open. Clearly, each open base
set in ¢X is of the form ¢(U N X), where Ue<®B. Then, by (6), we have
<p(o‘(UnX)) =@p(UNnX)vep({fe Rx: UNnXeé})

= UNnXUgp({ye uX\X: ye U}))
=UnXuUn(uX\X)="U,
which completes the proof.

~7/
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Necessity follows by Lemma 1.

CoroLLARY (Katétov [8], cf. also Flachsmeyer [3]). The H-closed
Fomin extension oX is equivalent to the Cech-Stone compact ewtension BX
iff the boundary of each open set in X is compact.

Proof. In virtue of (4'), Bd,x U is compact for each UeB. Hence
ocX is regular and in consequence compact. And if ¢X is compact, then
it is equivalent to gX. In faet, in virtue of (4), every two sets which are
completely separated in X have disjoint closures in fX. The converse
implication is obvious.

Let X be a Hausdorff space. The set of all H-closed extensions of
X can be partially ordered: we say that an extension uX is not less than
an extension u'X iff there exists a map ¢: uX — u’'X completing the
diagram

X cuX
N e
pw'X

It is easy to see that ¢ maps the remainder into the remainder.

THEOREM 2. If X ¢ a Hausdorff space, then the Fomin extension ¢X
18 the greatest one in the set of all H-closed extensions which have the remainder
0-dimensionally embedded.

Proof. Let uX be the H-closed extension with the 0-dimensionally
embedded remainder. Since the Katétov extension X is the greatest
one in the set of all H-closed extensions, there exists a map

onto
p: X

being identity on X and carrying the remainder onto the remainder.
The set 0 X is equal to 7X. Let y be the map equal to ¢ in the set-theoretical
sense, carrying the space ¢X onto uX. \We shall show that the map vy
is continuous.

Let B be the base of the topology on uX such that for each UeB
the boundary of U lies in X. In order to prove our theorem it suffices
to show that for each Ue B there is

(7) ¢~ (U) = a(UnX).

Clearly, ¢/ (U)NX =UNnX =6(UnX)nX. If éeqp(U)NRy,
then U N X e & (because for each £e¢ Ry open neighbourhoods of & in the
topology of X are the sets VU{£}, where Ve £). Hence

te{neRy: UNnXen} =o(UNnX)NRy.

Since the boundary of U lies in X, the boundary of ¢-1(U) lies in X
(because ¢ is continuous). If £e¢ o(U NnX)NEy, then

£ Ol,y(o(U NX)) = Clx(p*(U) NX) = Clx¢~1( D).

> uX

6 — Colloquium Mathematicum XXV.2
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Hence £ ¢~1(U). Thus condition (7) holds. Since y~!(U) = ¢~(U),
in view of (7) map v is continuous.

THEOREM 3. For each regularly closed set A < X the closure Cl,x A
i8 an H-closed extension of A equivalent to the Fomin extension cA.

Proof. First, let us show that ¥ = Cl,x A, where A = Cl, U for
some U open in X, is an H-closed extension of A. Clearly, A is dense
in Y. Let us note that

(8) Cl,x(Clx U) = Cly Uu{ée Ry: Ue &},
which we shortly write as
(9) Y =4vae(0).
If (e Cl x(Clx U) "Ry, then o(V)NClx U 7+ O for each Ve & Hence
VU #@ for each Ve & which means that Ue &.

Thus
Cl,x(ClyU) =« Cly Uu{ée Ry: Ue &}.

Obviously, Cly U = Cl,x(Cly U). If ne {{e Rx: Ue &}, then, for Uey
and for each base neighbourhood o(V) of #», there is o(V)NClxU +# @.
Hence 7e Cl x(Cly U). By (8) and Lemma 1, Y = Cl,xo(U) is H-closed
as a regularly closed subset of the H-closed space oX.

Let 2 = {a(V)nY: V is open in X}. Clearly, # is a base in Y. In
order to prove the equivalence of Y and oA it is sufficient to show, by
Theorem 1, that for each We 2 there is

Cl,W = WuCL,(WnA).
Let W =06(V)nY. By (8) and Lemma 1 we get
Cl, W =Cly[e(V)NnY] = YNnClx[c(V)Nn Y]

= Y NClx[o(V)n(Clx Uuas(T))]

= YNnClx[c(UnV)ue(V)NCl; U]

= Y n[Clx(UnV)uo(UnTV)UClx(o(V)NCl, U)|.
It i3 easy to check that

CLx(¢(V)nClx U) = Cly(VNClx U)us(UNV).

One can show in a way analogous to (2) that c(UN7V) =o(U) Nna(V).
Then by (9) we get

Cl, W = Y n[Clx(VNnCly U)ue(V NT)]
= ANClx(VNnA)VY na(U)Nno(V) =Cly(WnA)LUW.

Thus the theorem is proved.
The next theorem is analogous to a known theorem which says that
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a Tychonoff space X is locally compact iff for each its compactification
c¢X the remainder ¢cX\ X is closed (cf. Engelking [2], p. 137); here Ry
denotes the remainder in the Fomin extension oX.

THEOREM 4. Let X be a Hausdorff space. The following conditions
are equivalent:
(I) X 18 locally H-closed.
(ITI) The remainder Rx is compact.
(III) The remainder Ry is closed.

Proof. 1. Let X be a locally H-closed space and let ¥ be a covering
of the remainder by open base sets. Since X is locally H-closed space,
there exists, for each point xe¢X, an open set U < X such that Cly U
is H-closed. Let ‘

# = {o(U): ClxU is H-closed}U{o(V): o(V)NRxe ¥}.

The family # is an open covering of ¢X. Since 0X is H-closed, there

exists a finite subfamily & of # such that
U {Cl,xA: Ae ¥} = oX.
Hence
U {(CIGXA n.Rx): A€ y} = .RX.
In virtue of Lemma 1 we have
RyNClx0(U) =RxNCl,xU = RxN(ClxyUU{fe Rx: Uce &})

Hence '
(10) Ry = {BxnA: Ae%}.

Note that RynNnA =© unless ANKRye¥". In fact, if A = o(U)

and o(U)NRx¢ ¥, then Clx U is H-closed. By Lemma 1 we have
{éeRx: Ue £}UCIxU =Cl,xU = Cl,x(Clx U) = Clx U.
Hence
c(U)NRy ={teRx: Uel&} =0.

Therefore, by (10), the remainder Ry is compact.

2. Let us assume that the remainder Ry is closed. Hence X is open
in ¢X. Then for each zeX there exists an open base set o(U) such that
zeo(U) =« X. Since o(U) = Uu{ée Rx: Ue &},

(11) {éeRx: Ueé} =0.

The set Cl,xo(U) is H-closed, because it is a regularly closed subset

of the H-closed space ¢X. In virtue of Lemma 1 and (11), there is

ClaxU(U) = OlaXU = OIX UU{EE ‘RX: Ue 5} = Clxv-
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Hence each point weX has an open neighbourhood the closure of
which is H-closed.

To complete the proof of our theorem, it is now sufficient to notice
obvious implication (II) = (ILI).

COROLLARY. A regularly closed subset of a locally H-closed space is
locally H-closed.

Proof. In fact, if A « X is regularly closed, then, by Theorem 3,
Cl,x 4 is an H-closed extension of A equivalent to ¢A. By (8) the set
{ée¢ Rx: Ue &} is the remainder of this extension. In virtue of Theorem 4,
the remainder Ry is closed in ¢X. Since the set {£e¢ Ry: Ue £} is closed
in Ry, it is also closed in Cl,xA. Thus A is locally H-closed.

A continuous map ¢: X — Y is said to be a contraction provided it
is one-to-one and onto.

COROLLARY. Each locally H-closed space X has a contraction onto
a minimal Hausdorff space.

Proof. Let A = R,U{xr}, where xeX. By (II) of Theorem 4, 4 is
compact. Let 0.X/A4 be the quotient space and let ¢: 0 X — 0X/A be the
natural map. Since the map o: X < ¢X is embedding, the composition
goo: X c 6X - 0X/A is a contraction. Clearly, ¢X /4 is a Hausdorff,
and therefore it is an H-closed space. If we contract the topology on
6X|A to the semi-regular one, we get a contraction of X to a minimal
Hausdorff space.

3. Various kinds of perfect maps. A (continuous) map f: X - Y
is said to be t-proper ([1]) provided there exists a (unique) map zf: 7X — 7Y
completing the diagram

XcX

(12) 4 v
Yc1Y

(rZ denoting the Katétov extension of Z).

If, in addition, tf carries the remainder into the remainder, i.e., if
f(r X\ X) c T Y\Y, it is said to be z-perfect.

It was proved in [1] that a (continuous) map f: X — Y is z-perfect
iff the following conditions hold:

(I) f is T-proper;

(IT) for each ultrafilter £e¢ X\ X and each yeY there exists Ue &
such that f~1(y) NnCly U = G;

(III) f(4) is closed for each regularly closed A < X.

Let us call a map f: X — Y o-perfect iff there exists a (unique) map
of completing the diagram like (12), with ¢ instead of 7, and such that
af(cX\X) cocY\Y.
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THEOREM 5. If X and Y are Hausdorff and f: X — Y is continuous,
then the following conditions are equivalent:
(I) f is z-perfect;
(IX) f v8 o-perfect;
(IIX) for each wultrafilter & in X without adherence points, the family
n ={V open in Y: f~1(V)e &} is the ultrafilter in Y without adherence
points.

Proof. 1. (IT) = (III). Let £ be an ultrafilter in X without adherence
points. Since £e o X\ X = Ry, of(§)es¥Y\Y = Ry. Clearly, 7% is a filter.
It suffices to show that the ultrafilter of(£) is contained in %. If Ve of (&),
then of (£)e o(V). By the continuity of of, there exists an open base set
o(U) such that &e o(U) and of (¢(U)) = o(V). Then Ue ¢ and

F(U) = flo(U)nX) = of (s(U)nX) < of (s(U) Y ca(V)NY = V.

Thus U < f~'(V) which means that f~'(V)e £ and in consequence
Ven. Hence 7 is an ultrafilter without adherence points.

2. (III) = (II). The map of is defined by the formula
of () = f(x) for each reX,

13
(13) of(§) = {V open in Y: f~}(V)e &} for each &e Ry.

By the assumption, ¢f maps the remainder into the remainder, i.e.,
of(Rx) =« Ry. To show the continuity of of, let us take a base open set
(V) in ¢Y. We get

(af) " (o(V)) = (of )M (VU{ne Ry: Ven})
= (of) ' (V)U(af ) ({ne Ry: Ven})
=fUV)U{écRy: f1(V)e & = o(f(V),
which means that ¢f is continuous.

3. (I) = (III). Let £ be an ultrafilter in X without adherence points.
By the assumption, there exists a map zf filling up the diagram (12) and
such that zf(rX\X) <« tY\Y. Hence tf(£) is an ultrafilter without
adherence points. It is now sufficient to show that zf(&) = 5. To do this
let Vezf(&). Then Vu{zf(£)} is an open neighbourhood of the point
f(&)e tY\ Y. By the continuity of zf, there exists an open neighbour-
hood Uu{&} of the point & such that f(UU{&}) =« Vu{zf(£)}. Hence
f(U) = V and, in consequence, U < f~!(V). Since Ue &, there is f~*(V)e &
which means that Ve .

4. (III) = (I). The map zf: vX — tvY is defined as follows:
7f(x) = f(x) for each zeX,

14
(4) 7f(&) = {V open in Y: f~}(V)e &} for each &erX\X.
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Clearly, zf(z X\ X) <« Y\ Y. It remains to show that zf is contin-
uous map. Continuity at points of X is obvious, and if £e¢7X\ X, then
each open neighbourhood of the point zf(£) is the form V U {zf(£)}, where
Ve 7f(£). From the definition of zf, we have f~*(V)e & Hence f~'(V)U {&}
is an open neighbourhood of & and =f(f}(V)U{£}) = VU {zf(&)} which
ends our proof.

It is known from Henriksen and Isbell [5] that in the case of compact
extensions, the family of perfect maps with respect to the Cech-Stone
extension is equal to the family of perfect maps in the usual sense (i.e.,
closed maps such that f~'(y) are compact for yeY). It was proved in [1]
that there exist maps which are perfect but not z-perfect.

From Theorems 4 and 5 it follows immediately that if f: X - Y
is t-perfect; and Y is locally H-closed, then X is locally H-closed. In fact,
the remainder of ¢X is the counter-image by of of the remainder of ¢Y
which is closed.

A (continuous) map f: X — Y is said to be skeletal ([9], p- 13) if,
for each open subset V of Y, we have

onto

(15) Intxf~'(Cly V) < Clgf~X(V).

It is easy to see that a (continuous) map is skeletal iff the counter-
image of each dense and open set is dense and open. Herrlich and Strecker
introduced (cf. [6]) pseudo-open maps (i.e., maps such that, for each 4 = X,
Intx A # O implies Int;Cly-f(A4) # 9). It is worth to mention that both
notions coincide.

THEOREM 6. A (continuous) map f: X — Y is pseudo-open iff it is
skeletal.

Proof. 1. Let f be a skeletal map and let A = X be such that IntyA
# @. Suppose that IntyClyf(4) =@. Since f is skeletal, f~'(Clyf(4))
is the boundary set in X. Then we get

O = Intxf ' (Clyf(4)) > Intxf(f(4)) o IntxA,

a contradiction.

2. Let f be a pseudo-open map. It is sufficient to show that the
counter-image of each boundary and closed set in Y is boundary in X.
Suppose that B = Y is boundary and closed and Intyf~'(B) s @. Since
‘the map f is pseudo-open, Int,Cl,f(f~'(B)) #@. Then IntyB # O,
a contradiction.

We shall prove the following

LeMMA 2. A (continuous) map f: X — Y is skeletal iff, for each ultra-
Jilter & of open subsets of X, the family n = {V open in Y: f~1(V)e &} is
an ultrafilter.
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Proof. 1. Let us assume that, for each ultrafilter £, the family 5
= {V open in Y: f7'(V)e &} is an ultrafilter and let G be an arbitrary
dense and open set in Y. Clearly, Ge 7. Hence f~!(G)e & for each ultra-
filter & Thus f7'(@) is dense in X.

2. Let us assume that f: X — Y is a skeletal map and let & be an
arbitrary ultrafilter in X. We show that 4 = {V open in Y: f~}(V)e &}
is an ultrafilter. Clearly, 5 is a filter in Y. Suppose that an openset U c Y
does not belong to 5. Let V = Y\Cl,U. Clearly, UuV is dense and
open in Y, therefore f‘ (Tuv) is dense and open in X. Then f~(U)u
Uf Y (V)e & Since f~Y(U)¢ & f1(V)e & Thus Ven and UNV =G which
means that n is an ultrafilter.

It is easy to see that all Hausdorff spaces and all skeletal maps form
a category. It seems natural to require that all maps in consideration
be elements of this category.

THEOREM 7. For a map f: X — Y there exists a skeletal map of:
cX — oY completing the diagram

X coX

(16) 1) ve!
YcoY

and carrying the remainder into the remainder iff f is skeletal and

(I) for each yeY and each &e Ry there exists an open set U such that
') < U and Ug¢ &,

(II) f(A) is closed for each A regularly closed in X.

Proof. 1. Let us assume that a map of: X — ¢Y completes diagram
(16) and of (Rx) = Ry . First, we show that f is a skeletal map. If V< Y
is dense and open, then c(V) = VURy is dense and open in ¢Y. Since of
is skeletal, (of)"'(o(V)) =f""(V)U(eX\ X) is dense and open in ¢X.
Thus j“(V) is dense and open in X. Now we verify condition (I). If ye Y
and £e Ry, then y # of(£). Then there exist sets U and V such that
ye U; Veof(§) and UNnV = @. Therefore f~(U)nf (V) = @, f*
c f~Y(U) and ée(of) '(oV). Since of maps remainder into remainder,
f ' (V)e & Hence f~1(U)¢ &.

Now we verify condition (II). Let A be a regularly closed set in X,
lL.e. A = Cl U, where U is open in X. By Lemma 1 we get

Ol U = Cly Uu{fec Ry: Ue &}

Since Cl,x U = Cl,xa(U) is regularly closed in ¢X, it is H-closed.
Then :
of (Cl,x U) = of (Clx U)Uaf({fe Rx: Ue &})

is closed in ¢Y. By the assumption that of (Rx) = Ry, f(ClxU) = f(4)
is closed in X.
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2. Let us assume that f: X — Y is skeletal and satisfies conditions (I)
and (II). The map of: X — oY is defined as follows:

of(x) = f(x) for each zeX,
of(§) ={V open in Y: f~Y(V)e &} for each £e¢ Ry.

From Lemma 2 it follows immediately that of (&) is an ultrafilter,
provided ¢ is an ultrafilter belonging to Ry. We show that of (&) is an
ultrafilter without adherence points. Suppose, a contrario, that

N {ClyV: Veaf(£)} =yeY.
Hence, by (17),
N A{ClyV: fT{(V)eé} =y.
By (I), there exists a set U such that f~!(y) « U and Uy¢ & Hence
f'(y) €« IntxCly U and IntxCly Uy¢ & By (II), V = Y\ f(X\IntxCly U)

is open and yeV. Since y is an adherence point of the ultrafilter of (£),
there is Ve of (£). Thus f~'(V)e & On the other hand,

F V) = INf(f(X\IntxCly U)) < IntxCl, T.

Hence IntyClxUe & a contradiction. Therefore, of: X — oY is
the map from oX to ¢Y and of (Rx) c Ry.

In order to finish our proof it is sufficient to show continuity and
skeletality of af. To do this let us note that, for each V open in Y, there is

(18) (af)'({ne Ry: Ven}) = {éeRx: f1(V)e &}.

If e (of ) '({ne Ry: Ven}), then Ve of(£). Hence, by (17), f~(V)e &.
Conversely, let f~'(V)e & Then we have Ve of(£) and, in consequence,
Ee(af) ' ({ne Ry: Ven}). By (18) we get

(af) o (V) = (af )" (VU{ne Ry: Ven})
= (of ) "U(V)U(af) ' ({ne Ryp: Ven})
=fHV)U{Ee Rx: f1(V)e &} = o(f (V).

Therefore, the counterimage of each base open set o(V) is open.
The map of is skeletal. In fact, if W < ¢Y is dense and open, then WNY
is dense and open in Y. Since f is skeletal, f~'(W N Y) is dense in X. Hence
(af)"'(W) is dense and open in ¢X.

From Theorem 7 it follows immediately assertion of the corollary to
Theorem 4, which says that each regularly closed subset A of a locally
H-closed space X is locally H-closed. In fact, embedding A < X is a
skeletal map and conditions (I) and (II) of Theorem 7 are evidently
satisfied. Hence, in virtue of Theorem 7 and Theorem 4, the set A is
locally H-closed.
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