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On a certain series

by MaArRexk KuczmaA (Katowice)

In the investigations of the integrable solutions of a functional equa-
tion it has turned out [3] that the uniqueness or lack of uniqueness of
the solution depends on the convergence or divergence of a series of the
form '

(1) X [[m@),

n=1 ¢t=1

where m is a positive function and the seqﬁence of points z; is generated
by iteration:

(2) T = fl2;), ©1=0,1,2,...

The purpose of the present paper is to give some criteria for the conver-
gence or divergence of series (1). A

In the sequel we make the following general hypothesis concerning
the function f:

(H) The function f(x) is defined and continuous im an interval I
= (0,d), and 0 < f(z) <z in I. Moreover, f(z) may be written in the form

f(@) = so+a"  h(z),

where 0 < s<1 and p > 0 are constants, and the function h(x) is bounded
in I.

We write
hy = liminf |h(z)|, H, = limsup |h(z)(;

z—0+0 0410
obviously 0 < hy < Hy < oc.

Under conditions (H) the sequence z; tends to zero for every z,el
([2], [B]). Therefore it is clear that if m, and m, are two positive functions
on I and m,(x) < m,(x) in a neighbourhood of zero, then the convergence
of the series D[ [m,(x;) implies the convergence of series D[ [m,(x;), whereas
the divergence of the latter implies the convergence of the former. For
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this reason we shall investigate the convergence of series (1) only for
certain test functions m. As the test functions we choose:

(3) m(x) =1—Cx?,
(4) m(x) = 1—C(logx=")"9,
(5) m(z) = 1—C(loglogz~")"9,

where C and q are positive constants. In the case of functions (4) and (5)
we assume that d is so small that m () is defined and positive in I.

If, besides the sequence z,, we consider the sequence y; = z,,;,j > 0,
then we have

oo n 7 n ) 00 n

(6) D m@) = [[m@d+[[m@y{ D [[m}.
1 1 i=1 , 1

n=1 i= n=1 1= n=1 i=

Relation (6) shows that we do not spoil the convergence (or divergence)
of series (1) if we restrict x, to a small neighbourhood of zero.

In the sequel we shall repeatedly use the fact (cf. e.g. [1], § 40)
that

" (an+ b)'—*
(7) Z(ai—l—b)“" =1 a(l—k)
=t a~'log(an+b)+E, if k=1,

where F, is a convergent sequence. Here a > 0 and b are arbitrary con-

stants, and %, is such that ai-+b > 0 for ¢ > ¢,. The sequence FE, depends,
of course, on a, b, k and i,.

We write

+ E, if k#1, k>0,

r(z) = 1—m(z),

rP, =U'm(:vi) =I] (1 —7(a)).

For an arbitrary number D > 1 we have

(8) —Dr(w) < log(l—7(2)) < —r(@)

provided that

(9) 0<r(@) < (D—1)/D.

Since in all cases (3), (4), (5) we have lim r(z) = 0, 7(x) > 0, condition
z-0+0

(9) may be realized if we restrict ourselves to a suitably small neighbour-
hood of zero. As was remarked previously (cf. relation (6)) this does not
diminish the generality of our considerations.

Relation (8) implies the estimation

(10) exp ( —D Zn:r(a:i)) < P, < exp ( —jr(a:,-)).
i=1 i=1
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THEOREM 1. Suppose that s =1, hy > 0, and m(x) is givem by (3).
If p<gq, or p =q and C < hyp, then series (1) diverges for every zyel.

Proof. As was shown in [5], for every number M > (h,p)~ ' there
exists an index N such that

z, < Mi™'" for i> N
(x, is considered as fixed). Hence

r(z;) <CM% %" for i> N

and
n n
Dr@)<CM® )i+ 4 for n> N,
1=1 i=N

N-1
where A = )’ #(x,) is a constant. If p < ¢, then we have by (7)
=1

]

n

cemt
(11) Zr(mi) ST HOME,+ 4 for > N,

i=1

where k = ¢q/p > 1. Writing K = DCM‘(1—k)™', K, = DCM?E,+ DA,
we have from (10) and (11)

(12) P,>exp(—Kn'*—-K,) forn>N.

Since the sequence K, converges and & > 1, the expression on the right-
hand side of (12) converges to a positive limit and thus series (1) diverges.
If p = ¢q, then by (7)

n
, Zr(wi) < CMUogn+CM‘E,+A for n>= N,
=1

and writing K = DCM? K, = DCM'E,+ DA, we have as previously
(13) P, > exp(logn ¥+ K,) =n¥exp(—K,) forn>=N.

Now, we may choose M very close to (hyp) ', i.e., since p = ¢, M? very
close to (h,p)~'. Similarly, D may be chosen very close to 1. Since by
hypothesis C(h,p)~' <1, we may make K <1 and the divergence of
series (1) results from (13).

THEOREM 2. Suppose that s = 1 and m(x) is given by (3). If p > ¢,
or p = q and C > H,yp, then series (1) converges for every x,el.

Proof. By the results of [5] for every number M < (H,p) "? there
exists an index N such that

x;> Mi™'® for i> N,
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whence, as previously,
n n
Dr@)=>0M? D i "+ 4 for n>N.

This together with relations (7) and (10) yields in the case k¥ = ¢q/p < 1
the estimation

(14) P,<exp(—Kn"*—K, forn>=N,
and in the case p = ¢ the estimation
(15) P,<n Fexp(—K,) forn>=DN,

where in (14) K = CM%1—%)"' > 0, and in (15) K = CM? > 1 provided
we choose M sufficiently large. K, 1s a convergent sequence.

In case (15) the convergence of series (1) is obvious. In case (14)
it is enough to note that

N0 logn

which implies the convergence of series (1) (cf. {4], p. 43).

THEOREM 3. Suppose that 0 < s<1 and m(x) 18 given by (4). If
g>1, or ¢ =1 and C <<logs™', then series (1) diverges for every myel.
Proof. In the present case the sequence z;s~* converges to a positive
limit ([5], [2], p- 138). Thus there exists a positive constant M such that

r, < Mst, i=1,2,...
Hence
r(x;) < C(ilogs™' —log M)~? for i > N,

or, with ¢ = logs™' >0, b = —log M,
r(r;) < C(ai+b)"?7 for 4> N,
where N is such that at-+-b > 0 for ¢ > N. Writing

N—-1
4 =D r(@),
i=1

we have
n
Zr(a: 2 (@i-+b)""+A for n>= N.
=N

If ¢ > 1, we obtain hence in view of (7)

n

Zr(mi) <—C  antB OB, +A for >N
a(l—q)

i=1
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and by (10)
(16) P,>exp[—K(an+b)"?—K,] for n>N,
CD .. . .
where K = —ﬁ!—), K, =CDE,+DA. This implies the divergence
a —_—

of series (1), since the sequence on the right-hand side of (16) tends to
a positive limit.
If ¢ =1, then by (7)

N'r(x) < Ca'log(an+b)+CE,+ A4  for n> N,
=1 )

ie., with K — DCa', K, — DCE,-- DA,
P,> (an+b) Fexp(—K,) for n>=N.

Choosing D sufficiently close to 1 we may make K < 1, and the diver-
gence of series (1) follows.

THEOREM 4. Suppose that 0 < s <1 and m(wx) 8 given by (4). If
¢g<1, or ¢ =1 and C >logs ', then series (1) converges for every w,el.
Proof. Similarly as previously we arrive at the estimations

(17) P,<exp[—K(an-+b)'"?—K,] forn>=N,if ¢g<1,
and
(18) P, < (an+b) Kexp(—K,) forn>N,if ¢ =1,

where in (17) K = CDJa(l—¢q) > 0, and in (18) K = Ca™' > 1, whereas
in both cases K, = CE,+ A is a convergent sequence. The convergence
of series (1) results now as in the proof of Theorem 2.

THEOREM 5. Suppose that s = 0 and m(x) 48 given by (5). If ¢ > 1,
or ¢q =1 and C < log(p+1), then series (1) diverges for every x,el.

Proof. As was shown in [5], there exists a positive constant M < 1
and an index N such that

2, < MEHY for i> N,
Hence
r(2;) < C(ilog(p+1)+loglog~')~¢ for i> N,

or, with a =log(p+1)>0, b =loglogM*,
r{z;) < C(at+b)"% for ¢>= N,

where we assume that N has been chosen so large that ai+b > 0 for
i > N. Further the proof is identical as that of Theorem 3.
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THEOREM 6. Suppose that s =0, hy > 0, and. m(x) s given by (5).
If g<1, or ¢q =1 and C >log(p+1), then series (1) converges for every
$0€I.

Proof. The condition k, > 0 furnishes the estimation
@, > M@ for 4 >N

with a positive constant M < 1 (cf. [56]). As in the proof of Theorem 5
we derive hence the inequality

r(z;) > Clai+b)"? for >N

with @ =log(p+1) >0, b = loglog M~', and further the proof ruﬁs as
that of Theorem 4.

Remark. Note that our test functions are comparable with  each
other; i.e., if m;, m;, my have form (3), (4), (5), respectively (with diffe-
rent constants C and ¢q), then

My () < Ma(®) < My ()

in a meighbourhood of zero.

References

{11 K. Knopp, Theorie und Anwendung der unendlichen Reihen, 4. Auflage, Berlin,
Heidelberg 1947.

{2] M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, War-
szawa 1968.

[3] — On integrable solutions of a functional equation, Bull. Acad. Polon. Sci., Sér.
Sci. Math. Astr. Phys. (to appear).

[4] W. Sierpinski, Dzialania nieskornczone, Monografie Mat. 13, Warszawa 1948,

[6] W. J. Thron, Sequences generated by iteration, Trans. Amer. Math. Soc. 96 (1960),
p. 38-563.

Regu par la Rédaclion. le 15. 3. 1971



