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On functions with vanishing local derivative

by KRrysTYna SkOrRNIK (Katowice)

Abstract. There is given the general form of functions f from R? to a Banach space. The
functions are assumed to be locally integrable in the sense of Bochner and to fulfil the
differential equation f*™ =0, where m is a multi-index and the derivative is in the sense of
Sobolev.

It is known that if a real function f in R? is of class C™, where m

=(py, .-, 4y (4; are non-negative integers), and f™(x)=0 for x
= (él» vy éq)eRq’ then
(1) f(x) = Z E [+ ...+ Z éf;fqi(x),

O<ispp-—-1 0<ig€u,—1

q

where the functions f; are constant with respect to the variables ¢,
respectively (if y; = O for some j, then the corresponding sum in (1) should be
replaced by 0).

The proof of this fact can be found, for instance, in [5]. Theorem 28.4 in
[5] is alternatively formulated also for the case of integrable functions and
then /™ is meant in the distributional sense. However, the proof given there
is not adequate for integrable functions. The theorem in this case can be
deduced from [4].

In [8], the theorem is generalized to the case of functions from R? to a
Hilbert space, which are locally integrable in the sense of Bochner. But the
method applied in the proof fails, if the value of functions are in an arbitrary
Banach space.

In this paper, we shall show that the theorems is also true for locally
integrable functions from R? to an arbitrary Banach space.

1. Let 2 be a Banach space. The points of the g-dimensional Euclidean
space R? are denOted by X =(él’ AERE] éq)’ y =("l’ (AR ] 'Tq)s 4 =(Cl: cevy Cq)s Tty
and the set of all non-negative integer points of R? by P We adopt the
notation: x+y = (S +ny, ..., Cotng)y Ax=(48y, ..., 4D, xy=(iny, ...

s Gy xm =N 6%, where m=(y,,..., u)eP? and i is a real

number. The letter ¢; denotes the point whose ith coordinate is 1 and all
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the remaining ones are 0. The following notation will also be used:
e=(1,...,1,0=(0,...,0).

In what follows, we shall use, as far as possible, the notation from [2]
and [8].

All integrals considered in this paper are meant as Bochner integrals (see
[6].

We adopt the following definition of the difference operator:

2 AW f = grx A;nq,zq)f,

where me P9, h=(y,, ..., yp€ R? and the symbols on the right-hand side
mean the iteration of difference operators of one variable:

(i X7) - _WHiTI(H io. v.
= 5 () et

0<j<y;

with the convention:
(Ovl')
A7 f = f.

By the mth local derivative of a function f: R? - 4 we mean a function
g such that

(3) lim j
h—0

!

h—lm-A""""f(x)—g(x) dx =0

for every bounded interval I in R? (see [8], [9]). In order to have this
definition sensible, we assume that the integrand in (3) is a locally integrable
function of x. Evidently, if f is locally integrable, and the local derivative
D f of f exists, then it is also locally integrable.

If a vector valued function f, defined in RY, is of class C™ in RY, then its
local derivative of order m exists and is equal to the ordinary derivative:
DLf=D"f |

In [10], it is proved that the local derivative and Sobolev’s derivative
are equivalent, i.e, if one of the derivatives exists, then the other does and
they are equal.

2. By the convolution of two functions f and g we mean the function
which assigns to each point xe R? the integral

4 [ fx=ng(t)dr.
RY

The convolution exists at a point x, whenever the product f(x—t)g(r) is
Bochner integrable with respect to t. We assume that the values of one of the
functions f and g is in & and of the other is in R'. Convolution (4) will be
denoted by f *g.
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LemMMa 1. If a locally integrable vector function f has the m-th local
derivative and a real function g is of class C™ and of bounded support, then the
convolution f xg is of class C™ and

D™(f*g) = (D5 ) *g.
This lemma follows as a simple corollary of Theorem 1 and Lemmas 4
and 5 in [9].
TueOREM 1. If the function f: R' — & is continuous and

ALt l'z’f(f) =0

for arbitrary &, xeR?, then f is a polynomial of degree <p.
Proof. If A®*10 f =0, then DX'' f =0, by the definition of local
derivative.
Consider a real delta-sequence {8,} (see [2], p. 116). In view of Lemma
D** !, = (DES f) %6,

loc

nt1

where @, = f %4,. Since D£7! f =0, we have D**! ¢, = 0. This implies, in
view of Theorem 8.14.2 (see [3]), that

(Pn(é) = a0n+*alné+a2n¢2+ +aun€n-

Let y,eR' (i=0,1,...,p), 7 #y; for i+#j. Consider the system of
equations,

-------------------

where ¢;, = @,(y;) (=0, 1, ..., u). Solving this system of equations we get

P | 73
5 a, = -1 +i+2 "+l"+lC-,,,
(5) og&( y —w G
where
1’}’03 "}"(‘)
W—1........
1;)’“,- ,7,‘:

and W, ;. is the minor of the determinant W obtained by omitting the
(i+1)th column and the (j+1)th line.
Since

@ (&) =(f*6,) (&) = f(¢) almost uniformly
(p. 76, Theorem 3.1.1, see [2]), we have c;, — c; as n— co. Hence, by (5), the
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limits lim g;, = a; exist and

iviv2 Wisnira
a; = Z (—l)”+l+z_j_'_Cj.
0<j<u w
Thus we have f({) =ap+a; &+ ... +a,&* and the proof is complete.

Remark. Theorem 1 was proved, in [1], by T. Angheluta for the case
of real valued functions. The theorem of Angheluta was generalized, in [8],
to the case of functions with values in a given Hilbert space. But the method
used in the proof cannot be applied in the case of functions with values in an
arbitrary Banach space.

3. Let T denote the set of all zero-one systems, in which i elements are
equal to 1 and (g—i) elements are equal to 0. For given keT? a
=(ay, ..., 2)eR? and a function f: R*— & we adopt the notation

L f(x) = f(x—kx+ka).
In case k = ¢; the symbol Sf f(x) depends only on the ith coordinate of a
and we shall write then S’ f(x) instead of 2 f(x).
We define the operation 4, = Y n,;S; for arbitrary n;, a,eR' on

1sj<i

functions f: Ri+— & letting
(S nSHfix= Y nSif.

1<j<i 1S)<i
Moreover, by 1 we mean the identical operation, ie, 1If =/ In
particular, the symbol (1 —A4,) f means f—A, f.
It is easy to see that
A,Ajf=AJA,f fori#j.

Let m = (y,, ..., u,) be a fixed element of P
Given a function f: R?— & and systems (a;y, ..., &;,) and (;y, ..., B;,)

= b;, where a;, f;;eR for i =1, ..., g, we define

(6) P =(1— Y ay e SIS £ ()

0<jk<y;—1
for i =1, ..., g, moreover, we adopt
it =.
It is easy to check that
V:u,-.b,-)A}uj.xﬂf _ A;n,-.xj) V:"i'bi)f for i #J,
P D f = I P [ for i .
We have the following

Q)
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LemMmA 2. If f: R9— X is a continuous function such that
Amted f(5) =0 for h, xe R
and
(8) SPf(x)=0 fori=1,...,q,

then for every b; = (B, ..., Bi,), where ByeR' (i=1,...,q;j=1,..., 1)
and B;; # By for j # k, we have

perty | petd f(x) =0  for xeR9.
Proof. By (2), we have
4 F(x) =0,
where
F(x) = g2t 12 A:n,,ﬂ.zq)f(x).
By Theorem 1 and (8),
GE)=A " +...+4,¢,

where G(§) =F(, &, ..., &) and A (i=1,..., ) are functions of the
variables ¢,, ..., &,.

Let B;eR' (i=1,..., p) with B; # B; for i #j. From the system of
equations

------------------

we get

L Vij+
A‘-= Z (—1)'+J+IG(BJ) i.J 1’

0<jsuy -1 14

where

and V¥ ;,, is the minor of the determinant V obtained by omitting the ith
column and the (j+ I)th line. Hence

® GO= X IC"“ %y - sk+1 G (Bus 1),

0<jk<py -
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where

V.
(10) au=(—1/0 Gok=1,..m).

Formula (9) can be written in the form

F= ) é{+laul—j,k+l's_ql'k+l F(x).

0<jkSuy—1
By the definition of F¥""*" we have

uy.by) a1.b1) ,ua+1,x9) gt 1l.xg)
PRt F = gt g2t har gttt 2,

Now, by induction, we obtain the assertion, in view of (7).
If b=(p,;), where B;eR(i=1,...,q;:j=1,...,p) and c=
(715 ---» 2€P? (1 <v; < ), then we shall write
b, = (»31)'1’ cens quq)'

It is easy to check that the following equalities are true:

b e; (e +...%te)
l—[ S:jf=5(§1+...+e,.;f, I-[ x7=x"1 "

1<j<i 1<j<i

In other words, we have the following formulae:

j - ll'
(11) l—[ S:’jcf=sflc1+---+l,v)f, ]—[ RUBNUES

1<jsi 1<jsi
for l;e T{.
Let

a(k, m, n, C) = H a"i(“i_"i)"‘i(?i"' 1)
1<i<gq

with the convention: ay, = 1.
It is easy to prove that

[1 alej, myn,c)=a( Y e, mn,c).

1<j<i 1<j<i

This can be written in the form

(12) [1 atG, min,c)=a( Y L, mn,c) for l;eTt.

1<j<i 1<<i
THeorReM 2 (cf. [8]). If F: R"— I is a continuous function such that
AmteM F(x)=0 for h,xeR?
and
S’F(x)=0 fori=1,...,q,
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then for arbitrary b. = (By,,, ... ﬁqu) with Bi; # By for j # k we have

q
(13) Fo=3Y Y Y (—1)"tak, mn, )9Sk F(x)
i=1 ke'r;! Osc,n<m—e
for xeRY where c=(y;,...,7) n=Wy,...,v), m={uy,..., ) and
a(k, m, n, c¢) are some constants. The constants a(k, m, n, ¢) are given by the
formula

q
a(ka ms n, C) = l_[ ax,-(u,--vi-).xl-(yl-+l)a aOO = la
i=1

where the numbers ay (j, k =1, ..., w) are defined by (10).

Proof. By Lemma 2 and formula (6) for arbitrary b, = (Biyys -+ ﬂqu)
(1 <y <u; 1<i<qg), with B; # B, for i #k, we get
v;+1

q9
(14) H (1 - Z aﬁl"—vi.yi-f' 1 él'l
i=1

0y v Sp—1

Sf"'”“)F(x) =0;

if u; =0 for some j, then the corresponding sum in (14) should be replaced
by 0.
Let

q9
a(k’ m, n, ¢} = 1—[ ax,-(u,--vil.iq(r."" 1)
i=1

with the convention: oy = 1.
Equality (14) can be replaced by the equality

(15) [Taa— Y a( mn,xi+e Sf‘)F(x) =0.

ler'{ 0<e,n<m—e
By multiplying factors on the left-hand side of (15) and applying identities
(11) and (12) we obtain the equation

(1- i Y Y  (-Vlak,m,n, c)x"("”)S:‘)F(x) =0

i=1 keT'.q O0<c,nS<m-e
which is equivalent to (13).

4. The symbol
[BAGE
X0

will denote the iterated integral of order ke P4 of a locally integrable function
f (see [2], p. 69).

We say that a function f is constant with respect to x* (ke T, if f is
constant with respect to these coordinates ¢; for which »; = 1. A hyperplane
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7 is said to be perpendicular to the axis x* (ke T9) if n is perpendicular to the
axis &; for which »; = 1.

We shall use the following lemmas, proved in.[9] and [10].

Lemma 3 (cf. [9], Theorem 3). Let f: R"—= & be a locally integrable

function. We have DI f =0 iff A™" f(x) =0 holds for each fixed he R? and
almost all xeR9.

LemMma 4 (cf. [9], Theorem 4). Let f: RY— 4 be a locally integrable
Junction. Then

F(x)= [ f()dt
x0
is a local primitive for f.
Lemma 5 (cf. [10]). Let f2 R*— & be a locally integrable function. Then

x+h

Aen }f(t)dr = [ f(ndt
IO X

and
‘ x+h x+h

AW [ f(@ydr= [ A™P f(t)dr

X

for me P? and x, he R4

THeOREM 3. Let f: RY— Z be a locally integrable function. If Djy. f =0
then

(16) f= ¥ Y ¥ (=)'x"f, ae,

1€i<q keTiq OSn<m-e

where the functions f,, are locally integrable in the (q—i)-dimensional
hyperplane perpendicular to the axis x* and constant with respect to x* (if y;
= 0 for some j, then the corresponding sum in (16) is adopted to be 0).

Proof. It follows from Lemma 3 that

(17) A™P f(x) =0
for each fixed he R? and almost all xe R4
Let
(18) F(x) = jf(t)dt.
0

By Lemmas 4, 5 and equality (17), we obtain

x+h x+h

A(u+e.h)F = A(m.h)A(e.h) jf(t) dt = A(m.h) I f(l) dt = j‘ A(""h)f(t) dt = 0.
0 x x
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Since the function F satisfies assumptions of Theorem 2, we have

9

]'f(t)dt= >y Y (=D "lak, mn, c) X+ e g% F (x)
0

i=lkeT?0$nnSm-e

for xe R4,
Using the definition of the iterated integral and the Fubini theorem, we
have

x bC
xXknte) S F(x) = x40+ [ ({ f (1) dr*)dre*
x bto 0 X X b(
= x*" {([ f(©)de* [di*)dee™* = X" ([ f (t)dr*)dr.
0o 1] 00
Thus
q b

}f(r)dr =Y ) Y (—=1)'ak, m,n, c)x'"']'(_ff(t)dt")dt.
0 00

i=1 kerf 0<ce,nSm-¢
Since

X bC
knx=9 [([ f (1) dr*)dt = knx*" S F,
00

we have, in view of Lemma 4 and the Fubini theorem,

q

bt
Y ¥ Y (=) x*a(k,m, n, o) [ f(Odi*+knSF(x) = f(x),
0

i=1 kerg O<c.nsSm-e

where the above equality holds almost everywhere.
Denoting

bl.’
Y atk,m n, O[[f(O)dt+knSEF] = fim,
e 0

O<csm—-

we have for almost all xe R? the equation

f= Y ¥ X (=)',

1<i<gq kerf osn<m-e

where f,, are locally integrable functions in the (g —i)-dimensional hyperplane
perpendicular to the axis x* and constant with respect to x*.

Remark. Note that in view of the result of paper [10] the local
derivative can be replaced by Sobolev’s derivative.
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