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o ‘
Abstract. Let f(z) = ) a,2"be a holomorphic function in the unit disk {|z] < 1}
n=0 ’

We put

2r

1/p
Mp(r,f) = (— |f(re'°)|Pd6) , 0<p< oo,

Mo(r,f) = max|f(z).

12| =2

A holomorphic function f(z) is said to belong to the class N+ if log*|f| has a harmonio
majorant represented by Poisson integral ([1], p. 25. Priwalow denotes the same class
as D. See [6], p. 82.) Then we have H? < Nt c N, where N is the Nevanlinna class
of functions of bounded characteristic.
For functions of H? or N, growths of M,(r, f) a8 r—1 (¢ > p) and of a, a8 n— oo
are studied by several authors. We give here corresponding results for the class N+.
Results obtained are:

o(1)

1° My(r,f) = O(exp[ ]) as r—1 for 0 < g < oo,

2° ap = O(exp[o(l/fn,)]) a8 n—»>oo.
3% Let w(r), 0 <7 < 1, be any continuous function such that w(r)|0 as r—»l
Then, there is a function f(z)e N+ such that

Mq('r N ¢O(ex [1(:-])

4° Let {d,} be any positive sequence such that 8, | 0 as n—oco. Then there is
a function f(z)e N+ whose Taylor coefficients satisfy

ay # O(exp[énl/;]).

3° and 4° show that the limitations in.1° and 2° are exact in a strong sense.

We follow, for proving 3° and 4°, to the saddle point method of W. K. Hayman,
Acta Math. 112 (1964), p. 181-214.

Readers are recommended to consult Duren’s book, p. 84 and 98 for results
concerning HP, and Priwalow’s book, p. 106-108, concerning the class N.
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1. Introduction. Let D be the unit disk {|z] < 1}. For a holomorphic
function f(2) in D, we write

2m
1 1/n
w,r,0) = (55 [ 15 Pas)”, 0 <p< o0,
0

.Mm(r,f) = ]ina'flf(z)ly

r,f) =5 f log* [f(re)] de.

M(r,f) is usually denoted as T'(r,f) and called the Nevanlinna charac-
teristic of f(2).

For 0 < p < oo, a holomorphic function f(z) is said to belong to the
Hardy class H? if M,(r,f) = O(1) as r—1.

A holomorphlc funection f(2) is said to belong to the class N of funections
of bounded characteristic if M,y(r,f) = O(1) as r—L1.

A function f(2)e N is said to belong to the class N* if log* |f(2)| has
a harmonic majorant represented by the Poisson integral. f(z)e N* is
factorized as follows [1], p. 25:

(1.1) f(@) = B(2; )8(2; ))P(2; 1),

where B(z; f) is the Blaschke product relative to the zero points of f(z),
S(z;f) is a singular inner function, i.e.,

8
S(ei) = exp| - [ S du]

with a positive singular measure du,, and ®(z;f) is an outer funmction
Jor the class N, i.e.,

19+z

(33 f) = exp[ f ” Jog If(ﬂ)ldﬂ]

with a summable function log|f(6)|, [f(0) = hm |f(re*®)| for almost every
6, 0<0<2m.
Since for 0 <p < g< o0
(1.2) [p XMO(T’f)]up S My(r )< Mr,f) < M(r,f),
we have
. \UH? c Nt <N,

and these inclusion relations are proper [6], p. 82.
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Hardy and Littlewood [4], [5] proved that f(z)e H” implies
(1.3) Mq(.ryf) = 0((1_r)1/q—1/p)’ 0<p<g< oo,

and they pointed out that the exponent (1/¢ —1/p) is best possible. Duren
and Taylor [2] showed that the estimate (1.3) is best possible in a stronger
sense. )

Hardy and Littlewood [5] proved also that if f(2) = ) a,2"¢ H?,
0 <p<1, then

(1.4) a, = o(n'P1)

and that the exponent (1/p —1) in (1.4) is best possible. It was shown
[2], [3], that the estimate (1.4) cannot be improved at all.

We consider here corresponding problems for p = 0, i.e., for functions
of the class N or N*. |

It is well known that

(1.5) logM (r,f) = 0O (%) if f()eN.
The estimate (1.5) is best possible, as seen from the trivial example
(1.6) F(2) = exp [c ii:], ¢>0,

8. N. Mergelyan showed that if f(2) = Y a,2"¢ N, then
(1.7) logla,| = O(Vn)

and that the estimate (1.7) is best possible, using example (1.6), [6], p. 106.
For functions of the class N*, we shall prove in this note the

THEOREM 1. Lel f(2)e N*. Then

(1.8) logM,(r,f) = o( ), 0<p< oo.

1—r
THEOREM 2. Let f(2) = > a,z"e« N*. Then
(1.9) logla,| = o(Vn).

THEOREM 3. Let 0 <p << oo, and let w(r) be an arbitrary positive,
oontinuous, non-inoreasing funation on 0<r<1, with w(r)| 0 as r{ 1.
Then there exists a fumction f(2)e Nt such that

(1.10) log M, (r, f) # 0( @) )

1—r7r
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THEOREM 4. Let {8,} be a;z arbilrary sequence of positive mumbers
tending monotonically to 0. Then there exists a function f(z) = D a,z"e NT
such that

(1.11) logla,| % 0(3,Vn).

2. Proofs of Theorems 1 and 2. Let %(r, 6) be a harmonic majorant
of log™ |f(z)|, represented by the Poisson integral ot a boundary function
h(p) > 0. Then

(2.1) logM _(r,f) < max u(r, 0).

0<0<2n

Take a number ¢ > 0. Let K be a sufficiently large positive number so
that, for h¥(p) = min(K, h(p)), we have
1 2r ‘
(2.2) o= [ b —=@)dp <.
0

Then
2 2r
u(r, ) = [ Pr, 60 (9)dp+ [ P(r,050)(h(e)— ¥ (9)) do
0 0

= %0(1', 0)""'“1("1 3),’
where
1 1—r?

P(r, 0; ¢) =-27t 1+72—2rcos(6—g) )

‘Since 0 < h¥(¢) < K, we have
0<<uy(r,0)< K.

On the other hand, as easily seen,

g, 0)<2i_i—+—:0f (h(e) — K= (p))dp <
Thus
2¢
u(r, 0) <K+E-
Hence - .
(2.3) lim(1 —7)( max u(r, 6)) < 2e.

" r=l 0<f<2n

As ¢> 0 is arbitrary, we have our Theorem 1, using inequalities (2.1)
and (1.2).
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Next we prove Theorem 2, using the method of Mergelyan [6],
p. 106.
As is well known,

(2.4) lag| < inf (r~"M(r, f).
o<r<1

For any ¢ > 0, there is & number 7, = 7,(¢), 0 <7, <1, such that

(2.5) M (r,f) <exp [1%?] for r > r,.

Put

(2.6) gn(r) = ga(r; €) = 17 "exp [1 8_7,]

Then there holds .
(2.7) |as] < gn(r)  for r>1,.

We wish to seek the minimum value of g,(r) for r > 7,.

Since g, (7)/g.(r) = e(L—r)" —n/r, we have for the root r = r, of
the equation g, = 0,
(2.8) e = 1—Ven(l+o(1)).
Thus r, > r, if n is sufficiently large. Substituting (2.8) into (2.6), we
obtain by an easy calculation

laﬂ | < ezl’ns (1+0(l))’

which proves Theorem 2.
Now we turn to the proofs of Theorems 3 and 4, by means of con-
structions of examples.

3. Proof of Theorem 3.

3.1. Construction of the example. We can suppose 3 < w(0)<1.
Let ¢,, 0 <@, <p@py1 <1, n>1, be numbers such that

1 1

a1 1
(341 logd % w(en)

= Nn.

We define a function 2(3), 0 < s < oo, as follows:

(3.1.2") L(n) =20"/(L—9,)(1—0,4,) for s =n,

(3.1.2) Q) =2(n)+(2(n+1)—2(n))(s—n) for n<s<n+1.
Then we have that
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(3.1.3) £(s) is positive, continuous, increasing, and

1 1 1
Q'(logtl w(r))/(l—r)_> oo asr—1.

In fact, there holds for o, <7< @ni1s

1 1 1 1 1 1
“Q(log4 B )/(_1—r)> 9(10g4 8 (e )/(1—9,.“)

20" 1 ) 20"
= —_ e =
(1—0,)(1— 0ny1) T L —en)

> 20">00 as n—>o0, r—>1.

Moreover, we have obviously

1 2(n)
(3.1.4) % Borl "
Put
(3.1.5) b, = Q2(n)/2(n+1), n=1,
and
(3.1.6) € = biby... b, = 2(1)/2(n+1)|0 as n— oo.

We will define sequences of intervals {I,,}, {I;,}, » =0,1,...,
y=1,2,...,2"% as follows:

(i) Io,l = [07 1],

(ii) I, =10,6], IL,,=[1—¢,1];

I, = [3¢, 34 xe], Iis =[1-8%%x¢,1—3¢].

(iii) Suppose I,,, » =1,2,...,2"% be defined so that the length
of I,, for each v equals to ¢,. If, for a », I,,, = [8,T], 0 < § < T <1,
Tr'—8 =¢,, we define

Liiro—1 = (8, 840,111,
Inire = [T —¢p4ay T;
(3.1.7) Tnr,z—1 = [8+3ns1; S+38 X 6pi],
arnar = [T —3%6n,1, T—36,44].

Thus the construction proceeds inductively.
Let k() be a functlon deﬁned on [0,1] as follows:

(i) k(t) =0 for t¢ U U I,

Nm]l p=]
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(ii) %(t) =k, on each I,,, » =1,...,2"%,
where k, is a constant independent of ».

(3.1.8) JrWd =27"qg, .. gl —1), n>1,
I,
=2""010 ... Qi1 —qy), =2,
where
3.1.9 _ (B
(°°) Qn‘—59+n7 ”’/7
J/n which g is 2 number such that 0 < 8 < 1.
Then
(3.1.10) $<'l, €¢..-0:.)0, as n?too,
and
(3.1.11) f kt)dt =2""q,q; ... q,.
In,v
We put
L)
(3.1.12) fle) = exp[ f ;,—Jr:k(t)dt].
0

(#) can be easily seen to be a function of the class N*.
Now we will estimate, from below, the mean growth M,(r, F) of the

integral ¥ (z) = [ f(z)dz of f(2). If this done, we can obtain the estimate
0

from below of M,(r,f), as follows:
Put

fa(r, 6) = sup |f(te")].

. o<i<r
Then we have

(3.1.13) F(re") =| [ f(te®)e”at| < f(r, 0)

and, by the maximal theorem of Hardy-Littlewood [7], p. 186, Theorem
IV. 40,

2r 2r
(3.1.14) [ fulr,6Pa6 < A [ |f(re*)Pa6, p>0,
0 [
for an absolute constant A. Thus, from (3.1.13) and (3.1.14), we obtain

(3.1.15) My(r, F) < AV My(r, f),

which gives the required result.
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We proceed to estimate M,(r, F) by the saddle point method used
in [8].

3.2. Proof of Theorem 3. Fix numbers N and » If Iy, = [8, T1,
write
b =(8+T)/2, 4= A4(N)=cy/2,

(3.2.1)

o= [kOd=aqe.. 2"
Iy,

We will define sequences of intervals {J,.}, {Jn.}, (In}; {In}m =0,1,...
..., N —1, satisfying condition (3.2.2) below, as follows:
Put

Jo=dp,.
If » = 2u, we set
J; = IN.zp—l = I‘ Nyp—11
J, = IN—l.p = IN—l,vlzy
Jo = Iyz = Ix,,

Iy = Iy = Iy,
If v =2u—1, we set

14
Jo = IN,2y’ = IN,-+U

J, = IN-l,p = IN-],(r+l)I27
* * » !
Jy = IN.zp—l = IN.n

ik * *
o = IN.2M =Iy,41-

Suppose J,, be defined so as to satisfy the condition

(3.2.2) Jn =Iy_m, for a suitable number x, 0 < x < 2¥"™,

Then we set, if x = 24,

4
Jm = IN—m,zz—l = IN—m,x—l’
Jm+l = IN—-m—],A = IN—m—l,nIZ’
* » ®
Jm = IN—m,z). = IN—m,u’

ok * *
Jm =1 —-m,24—1 =1N—m.x—1-
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If » =24—1, we set
J;n = IN—m,zl = IN—m,u+l7
Jm+l = IN—m—l.l ='Il\"—m—l,(u+'l)l27
J:n = I‘I;T—m.n—l = ITV—m,x’
J:: = I;V—m,zl = I;V—m,u+1~

Thus o, J, Jm, and Ji are defined inductively up to m = N —1.
If te J,, and t'¢ J,,, we have from (3.1.6) and (3.1.5),

(3.2.3) == en—mor—26n-—m =1 .o by_m(OFm—2)
= 24 (bN—m+l oo bN)-l(bl_\-Tl—m_z)
>2x18x20™4 = 364 x 20™,

since by’ > 20, k> 1, as seen from (3.1.4) and (3.1.5).
If tedy, and t'e d ,,

(3.2.4) E—t'1> 20y_m = 24 X (By_my1 --- by) " > 44 X 20™,

and if teJ), and t'ed,,

(3.25)  {t—tI>en_m1—4.5¢y_m = by ... by_m(bFlm—4.B)
> 2 x15.5 x20™ = 314 x 20™.

These inequalities (3.2.3)—(3.2‘ 5) correspond to (4.7)-(4.9) of [8], hence the
arguments in [8] can be applied here, and we get for a number §,0 < 6 <0.2,

(3.2.6) |F(re®)| > exp [(1.01 — ) a,/A]
if
(3.2.7) r>1—6"4/50, |6—6,] <0.6(1—d)4,

as seen from (6.6) in [S]. Accordingly,

_ 6g+0.6(1—0)4 . 64(1—9)
(3:2.8) f [P (ré®)P 40 > ———— exp[p (L.OL— 8)ao/4].

0p—0.6(1—8)4

There are just 2V = a;'¢, .. gy different values of 6, for a fixed N, and
their total contributions are therefore at least '

(3.2.9) 1.2(1—6)g; ... qy % exp[p(1.01— 8)a,/4]

>1.2(1—6)exp[p(1.01—28)a,/4]
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for N > A(8), where A(4d) is a constant depending only on 4. Hence we
have, if r satisfies (3.2.7),

(3.2.10) M,(r, F)> Bexp[(1.01 —26)q,/4]
for a constant B = B(J). ‘
If we take
. 1 # 1
—_— —3 2 5 —_— o —
(3.2.11) 1-r=29 A./OO, 1 0 1=,

then, since 4 = ¢y/2 = 2(1)/22(N +1), we have from (3.2.11),

Q(N+1) = Q)24 = (/10 2(1)(1—7)",

(3.2.12) 1
.Q(N+1)/(E) _ (8/1012Q(1).

If N is sufficiently large such that corresponding » in (3.2.11) is near 1 so
as to satisfy

1 1 1 &
(3.2.13) Q(log4 log o) )/(1—r)>‘ 100 x 2(1),

we obtain, by the monotonicity of £2(s), from (3.2.12) and (3.2.13),

(3.2.14) N<N+1K 10;4 log w‘b) , wfr)<1/4V.

Now

(3.2.15)  ap =gy ... qn/2V = GV /2V > 1/3Y = (4/3)" % (1/47)
= ¥(rw(r),

where () is a function defined as follows: If we write 7, = 1— §* 4/50,
A = A(N) = oy/2,

P(r) = (4/3)Y for r = ry,

W(r) = (P (ryss) (' = 13) + P () a1 — 1) [(ryyn—7x)  fOr 1y <7<y
Then, obviously

(3.2.16) Y(ry—>oo as r—>1.

Hence we obtain, from (3.2.11) and (3.2.15),

(3.2.17) a,/A > (8[50) x ¥(r) x ;"f’r
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Thus we get, from (3.2.10), (3.2.17) and (3.2.16),
w(r) )
1—7r

which proves our Theorem 3, as stated in connection with (3.1.15).

= 00,

lim log M, (r, F) (
r—1 /

4. Proof of Theorem 4. We can suppose 6,<1, » =0,1,... Put

(4.1) a, =exp[6,Vn] and g(r) = Za;r“.
n=0
For each 7, 0 < r < 1, let »(r) be the least number such that
(4.2) eV xVr <1 for n>w»(r)+1.
Then
2 2 4 \?

4, <l—) <
4 0% i) < (555)
and

#(r) _ s _
(4.4) g(r) < 266,,|/n+ 2 (elll/n '/;)n(l/;)n

n=0 v(r)+1

< »(r)exp b,V > (N]+(1—Vr)™
< exp[28,4,)V(r)] < exp[8,4/(1—7)]

for r > r,, where 7, is a suitable constant.
Let r = o,, be the least number such that »(r) = n. We define a func-
tion w(r) as follows:

. w(r) = 868,_, for r = o,,

(4.5) @(r) = (881-1(0nsr—7) +88,(r—0,)[(0nsr—0a)
for o, <r< g,y,.

Then w(r) is continuous, non-increasing, and w(r)|0 as r+t1, and

(4.6) . g(r) < exp[“’(”].

1—7r

By Theorem 3, there is a function f(2) = Ya,2"« N*, constructed as
in (3.1.12), such that
w(r)

(4.7) My(r,f) # O(exp[l_r
From (4.7) we have, obviously,
a, # 0(a,), ie, a,+ O0(exp[8,/n]),

which is easily seen to be equivalent to Theorem 4.

]) for the w(r) in (4.5).
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