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Abstract, We are interested in the spectral properties of operators which satisfy some
commutation relations together with normal operators having zero dimensional spectrum.

To begin with we take the energetic basis {e,},> o in the separable complex
Hilbert space H. The quantum number operator N is defined by the formula

@

Nf= ) n(f, e,)e, on the manifold

D(N) = {feH: i n’|(f, e,)|I> < + o0}
n=0

N is a selfadjoint operator. The question of the quantum phase operator for
quantum harmonic oscillator is the question of finding a selfadjoint bounded
operator F, which satisfies the commutation relation [N, F]f = if for feM,
where M is a linear manifold dense in H. We refer to [2], [3], [5], [7] for the
history and solutions of this problem. See also [4], [6].

There is the nice and deep theorem essentially proved in [1] which reads
as follows:

(AD) Let F be a boundgd selfadjoint operator and let M < H be a linear dense
manifold. Then, if FM < M < D(N) and [N, F1f=if for fe M, then
N|M = the closure of the restriction of N to M is not selfadjoint.

It is shown in [1] that the failure of selfadjointness of N[M follows from
the property that N has a discrete spectrum, as well as from the Hilbert
formula for resolvents R(4, A) (4 closed), namely, the equality

(H) R(x, A)—R(B, A) = —(a—P)R(a, A)R(B, 4),
where R(y, A) = (yI—A)™ ', yeo(A) = the resolvent set of A. (H) implies that
(1) R(z, A)= —R%*(z, A), zep(A).
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The essential point in the proof in [1] is the trick with formula (14) below. Our
theorem formulated and proved below explains why (AD) is true. Namely, we
show that the true reason that (AD) holds true is that N|M has a non-empty
residual spectrum. Next, the proof in [1] uses the property that singletons
{n} m=0,1,2,..)are Riesz-Dunford spectral sets for N. The spectrum J(N)
is a zero-dimensional closed set. We recall that the following properties of
a closed plane set 4 are equivalent:

(2) & is zero-dimensional;
(3) ¢ is completely disconnected,;
(4) 6 has a countable basis {,} of clopen bounded sets §,.

Let A be a normal operator (bounded or not bounded) and such that the
spectrum 6(A) of A is zero dimensional. Let & be a clopen bounded subset of
8(A). Then there is a Cauchy domain Q(8) such that § < Q() and (6(A4)—d) N
Q) =© and 0Q(d) is an analytic contour I' < g(4), and such that the
Riesz—Dunford projection P(é, A) corresponding to & is expressed by the
following formula:

1
(5) P(, 4) = 5[ R(z, A)dz

(with the suitably oriented I'). We need the following lemma:

LEMMA. Let A be a normal operator with zero-dimensional spectrum. If {,}
is a basis of bounded clopen subsets of 6(A), Be L(H) and

P(,, A)B = BP(6,, A)
for all n, then
BR{z, A) = R(z, A)B  for zep(A).

The proof of the lemma follows from the regularity of the spectral measure
E of A, the fact that

E@,) = P(,, 4), Rz, A)= | e
' siay Z—U
for zeg(A) (see [8], Chapter IX, 135, 136, and Chapter XI, 148) and the
property that 8, are bounded and {§,} is a topological basis of 5(4).
We can say that the normal operator A with zero-dimensional spectrum is
spectrally scattered, because its spectral measure is living on a very, very thin,
extremely disconnected set. Last but not least, we notice that the quantum
number operator is spectrally scattered.
Our theorem reads as follows:

THEOREM. Let A be a normal, spectrally scattered operator in H. Suppose
that B and C are bounded linear operators in H. We assume that

(6) R(z, A)C = CR(z, A) for zeg(A),
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(7)  The linear manifold M < H is dense in H and M < D(A) and BM c M,

(8) ABf—BAf=(A, B]f=Cf for feM.
Then either

9 C=0

or

(10)  The closure Ay, = AIM of the restriction of A to M has a non-empty
residual spectrum.

Proof. If fe M and zeg(A), then there exists a unique vector s(f, z)
such that f= R(z, A)s(f, z). The commutation relation (8) yields that
B(zI — A)f—(zI — A)Bf = Cf and consequently, by (6) and the equality s(/, z) =
(zI—A)f, we get that

Bs(f, z) —(zI — A)BR(z, A)s(f, z} = CR(z, A)s(f, z) = R(z, A)Cs(/, z).

It follows that

(11) R(z, A)Bs(f, z)— BR(z, A)s(f, z) = R*(z, A)Cs(f, 2).

We have two possibilities:

(12) for each zeg(A), the linear manifold M(z) = (zI - A)M of vectors

s(f, z) (feM) is dense in H,
or

(13)  there exists zy€g(A) such that M, = (zo/ —A)M is not dense in H.
Suppose that (12) holds true. Then by (11) we get that for zeg(A)
(14) R(z, A\ B—BR(z, A) = R*(z, A)C.

Let {d,} be the topological basis of 3(A) of clopen bounded sets, and take the

projections
1

P@,, A) = 5 { R(z, A)dz
r"

for suitable I',. We derive now from (14), that for all n
1 1 1
— A —— \\B =— | R%*:z, A
5 rj'"R(z, )Bhdz 27"'1!,, R(z, A)hdz 27"!,. (z, AYChdz

for each he H. It follows from (1) that the last integral is equal to zero.
Consequently,
P(,, AAB—BP(6,, A)=0

for each n. By our lemma, R(z, A)B = BR(z, A) for zeg(A), which by (14)
implies that C =0, ie., (9) holds true.

Suppose that (13) holds true. Then there is a non-zero vector g orthogonal
to (zol — A)M . Since A,, = A|M < A and (z,] — A)™ ' exists, (zof — A,,) ! exists.
It follows that z, is in the residual spectrum of A4,,, which completes the proof.
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Let us come back to Theorem (AD). Since there appears the assumption
that, in our notation, C = il # 0, we see by our theorem that, for A = N, the
closure of the restriction of N to M has a non-empty residual spectrum and
consequently is not a selfadjoint operator. So, the part of N in M after closing
is not an orthodox quantum observable. Hence, since the candidates for
quantum phase operator F have been constructed ([3], [7]), the part of
quantum number operator, that one, which intervenes in the commutation
relation [N, F]f=if (fe M), after closing will be never an observable.
A similar effect appears for angle quantum variable ¢. To be more precise, we

take in the space L?(0, 2m) of functions f(¢) the operator
A=t
ido

with domain
D(A) = {f: / absolutely continuous on [0, 2n], /e L*(0, 2n), f(0) = f(2m)}.

The spectrum of A = A* is the whole totality of integers —d(A4) ={0, 1,
+2, +3,...}; A has a pure point simple spectrum. Let @ be the selfadjoint
operator of multiplication by an independent variable, that is, (&f (@) = ¢f(p)
for fe L*(0, 2n). @ is bounded and selfadjoint. Next, for fe{ge L*(0, 2n): ¢
absolutely continuous and g’ e L*(0, 2), g(0) =0 = g(2n)} = M we have

By the theorem, the closure A|M = A,, is not selfadjoint. So again, the
selfadjointness is lost at the cost of the commutation relation.
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