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Introduction. In the mathematical analysis we often have to deal
with the spaces of real functions defined on some metric space X, satisfying
the Lipschitz condition with a constant C > 0; if ¢ = 1, then we shall
call such functions mefric functions. The above-mentioned spaces, and
also many others which are equally important (spaces of continuous
real functions with the same continuity modulus, spaces of non-constant
increasing real functions on the segment or on the straight line, ete.),
are not linear spaces. They are all lattices (see Birkhoff {3]) as regards the
normal partial ordering in them, and we can define the addition of any real
number to any function in them as the addition of a constant function. (But
the constant functions themselves need not belong to those spaces.)

Kaplansky [13] introduced a new axiomatically defined class ot
algebras — distributive lattices upon which the real numbers act as
additive operators. These algebras he called translation lattices (in our
terminology distributive metric d-lattices). Kaplansky proved that the
translation lattices are isomorphic with the functional d-lattices (see § 1)
of real-valued continuous functions defined on any compact space X
(see [13], the main part of Theorem 2).

Here we give another proof of this assertion by means of a new notion
of “bunch” instead of the classical “ideal” (see § 5). In the proof we do
not make use of the representation theorem for distributive lattices.

A more general notion than that of metric d-lattices, namely the
notion of a translation semi-lattice was investigated by Pierce [17]. Some
of his results and ours are similar.

In this paper we give the representation theorem also for non-metric
distributive d-lattices (see § 7). For metric distributive d-lattices we
prove (in § 9) theorems which are generalizations of the Banach—Stone’s
theorem (cf. [2], [5]), [7] and [9]) and some others. Then we try to show
to what extent the non-distributive d-lattices have the structure of linear
spaces (see § 4). The appropriate method appears to be the investigation
of the influence of the metric on the algebraic structure of d-lattices
(see § 4 and 8), which in itself is interesting. For this purpose we introduce
some classes of metric spaces (see § 3). The section devoted to these spaces
is independent of the preceding ones.
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The following paper is an altered version of the author’s dissertation
submitted on 4. 10. 1965 at Warsaw University. Parts of it were presented

in the lecture during the Symposium on Algebra in Warsaw in September
1964.

§ 1. In this section we introduce d-lattices and fundamental concepts
connected with them (such as metric d-lattices, the comparability relation,
the d-lattice dual to a given one, homomorphisms and isomorphisms of
d-lattices, functional d-lattices). Among other results it is shown that
every lattice can be (isomorphically) embedded in a certain metric d-lattice.
Next, we show that every metric d-lattice is isometric to a certain d-lattice
of real functions. In this lattice the addition of a number to an element,
i.e. a function, consists in the addition of a constant function, and the
supremum of two functions is given by their maximum. If, in addition,
the infimum of two functions is given by their minimum, then we obtain
the important class of functional d-lattices. Finally, we give several
examples, illustrating certain problems connected with d-lattices.

A set § is called « lattice if it is partially ordered by a relation <, such
that for arbitrary elements a,beS there exists the least upper bound
a v b and the greatest lower bound a ~ b.

DEFINITION 1. A d-lattice is a pair composed of a lattice S and a func-
tion which maps § x R (the Cartesian product of § and R, where R is
the set of real numbers) into § and assigns an element a-FaeS to every
element a of the lattice S and to every real number a, so that the following
axioms are satisfied:

1. a+0 = a for aeS.

2. (at+a)+ B =a+t(a+p) for aeS and o, feR.

3. 1f a = b, then a+a < b+« for a,beS and ac k.

4. ata>a for « >0 and aeS.

5. If a o b, where «a, be§, then there exists an ¢ >0 such that

ad& ble.
6. For every a, beS there exists

Ula~ (b4 a)) and (M(a v (b+ a))

aeR uelR
and we have

a = U(a ~ (b+ a)) = ﬂ(a v (b4 a)).
aeR ael?

We shall prove a simple proposition:

(i) If a = b+e for every ¢ >0, then a < b.

Proof. Suppose the contrary. Then b < a v b and by axiom 5 there
exists an ¢ > 0 such that a v b ¢ b+2¢. Then, from axiom 4 it follows
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that a o b ¢ b+e, ie. a ¢ b+e (as b = b+¢), in contradiction to our
assumption. '

(ii) Axiom 1 follows from axiom 2, 1 and 5.

Proof. It follows from axiom 2 that (a+-0)+e = a-te. Appfying
axiom 1 we obtain a 10 < a4 and a < (a+0)+e for every ¢ > 0 and,
from property (i), a+0 = a.

DEFINITION 2. A metric d-lattice is a d-lattice such that:

6’. For every a, beS there exists an ae¢R such that b < a+ «.

It is evident that axiom 6’ implies axiom 6.

Elements a, b of a d-lattice § are said to be comparable if there exists
a real number a such that

a S b4-a and b < a--a.

Hence a d-lattice S is metric if and only if every pair of elements
of § is comparable. The relation of comparability is an equivalence relation
in a d-lattice 8§ and every equivalence class of this relation is a maximal
metric d-sublattice of the d-lattice S.

THEOREM 1.1 (duality theorem). If a set S forms a d-lattice with respect
to a partial ordering < and addition + of real numbers to elements of 8,
then it is also a d-lattice with respect to the ordering <° opposite to < (i.e.
a <° b iff b < a) and addition +-° given by formula a4-°a = a+(—a),
aeS, aeR. o

The d-lattice (S, =°, --?> obtained in this way from a d-lattice (S, = ,+)
is called dual to (S, =, +> and will be denoted by S°.

Proof. It is easy to see that axioms 1, 2 and 3 are satisfied in S°.
Axiom 6 is self-dual. We shall prove the remaining two.

It follows from axioms 1 and 2 that a +(—a)+a = a. Hence from
axiom 4 we obtain a4-(—a) = @ for a > 0. Thus axiom 4 holds for S°.

If a 2°b, then @ = b and there exists (by axiom 5) an & > 0 such
that a4-¢ 3 b. This means that @ $ b+ (—e¢). Thus axiom 3 holds for
S8°. The theorem is thus proved.

It is easy to see that if § is a metric d-lattice, then 8° is also a metric
one.

A mapping f: § — 8§ of a d-lattice S into a d-lattice §' is called
a homomorphism if

A 1-1 homomorphism is called an isomorphism. A homomeorphism
f: 8§ = R is called functional (on 8).
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A subset 8, of d-lattice S is a sublattice of S if a v beS,and a ~ beS,
for every a, beS,.

A sublattice S, of d-lattice 8 is a d-sublattice of 8§ if a+ aeS, for
every aeS, and aeR.

In the sequel we omit the brackets in the expressions (a v b)+a,
(@ wb)—a, (a ~b)+a and (a ~ b)—a.

THEOREM 1.2. (a) The following relations hold in every d-lattice:

avbta=(at+a)v (b+a),
ad~nbta=(at+a)~(b+a).
(b) The mapping f: S — 8 given by f(a) = a+ a is an automorphism
(isomorphism onto itself).
Proof. It follows from axiom 3 that a c b+a 2a+a and a v b+
+a2b+ta. Hence a wb+a2(a+ta)v (b+a).
On the other hand, for ¢ = (a+a) v (b+a) we have ¢ 2 a+« and
c2b+a. Hencec+(—a) 2 aandc+(—a) 2 b. Hencec+(—a)2a v b
and ¢ 2 a v b+ ea. Thus the first formula is true. The second formula

is dual to the first one. Now assertion (b) is obvious and Theorem 1.2
is proved.

COROLLARY 1. If a mapping f: S— 8’ i8 a homomorphism of a d-lattice
S into a d-lattice 8’y then the mapping g: 8 — 8’ given by g(z) = f(z)+ a,
aeR, ts also a homomorphism.

COROLLARY 2. Relation of comparability is a lattice congruence.
Later on we shall use the following important property of d-lattices:
LeEMMA 1.3. If b+ ¢ < a (respectively b— e 2 a) for some ¢ > 0 and if
a cbouc (resp. a2bnc), then a < ¢ (resp. a = ¢).
Proof. It follows from the assumptions of the lemma that
(1) avec(a—ne)vwe, n=0,1,2,...
In fact, inclusion (1) holds for n = 0. If it is true for a certain », then
avc S(a—ne)vwcecc(buc—neg)ue
c (b—mne) w(c—ne) ve = (b—ne)uece
c (a—(n+1)e) v e.

Thus, by induction, inclusion (1) holds for every » =0,1,2,...
But

oo

(a—ne) o el =c¢

n=0

(by axiom 6). Hence ¢ = ¢. The lemma is thus proved.

THEOREM 1.4. Any lattice L can be imbedded as a sublattice in a certain
melric Q-lattice.
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Proof. Let 8 denote the set of all functions f: L — R such that
fle v y) = min(f(2), f())

and
suplf(z)—f(y)l < 1.

x,yeL

Obviously, if feS and g(x) = f(z)4a for every xzeL, then geS.
Also if fieS for teT, and

inf f,(z) > — oo,
teT, el

then a function g: L — R given by
g(x) = it?Tffi(:v), zelL,
belongs to S. Hence the set § partially ordered by relation <, where
f =g iff f(z) < g(z) for every welL
is a metric d-lattice if we put
(f+a)(@) =f(@)+a for feS,aeR.
Evidently
(f ~ 9)(2) = min (f(x), g(z)) for f,geS.
Let us put

1 ifzx>2y
J(y) = , for x,yeL.
0 otherwise

Then f.eS and the mapping x — f;, zeL, is a lattice-isomorphic
imbedding of L into S.

Indeed, a ~b 2 iff a 2 and b =%, whence f, ,(xr) =1 Iiff
min (fa(-v) ’fb(a/)) =1,i.e.

(2) fanb =fa"‘fb'
Further, from (2) it follows that f, , = f, v f,. Since

(fa v fo)(a w b) = min((fa © fi)(a), (fov fo)(B) =1,

we have (f, v f3)(z) > 1 for any z < a v b and evidently (f, v fp)(x) >0
for all zeL. Hence f, », = f, v f5.

Thus, it follows from the above theorem that there exist non-distri-
butive and non-modular metric d-lattices (as lattices).
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THEOREM 1.5. Any metric d-lattice S is isomorphic to a d-lattice S,
of real functions defined on the same S and such that

(3) (f+a)(x) = f(x)+ a,

(4) (f v 9)(x) = max (f(x), g(x))
for every f, geS,, xeS, aell.
Proof. Let a real function f.: 8 - R, xS, be given by

fr(y) = inf{aeR: o < y+a} for  yeS.
If f+a is given by (3), then f,., = f.+ a. Furthermore,
feo:(y) =inf{aeR:z vz < y-ta}
= max (inf {«eR: r € y+u},inf {acR: 2 =y a})
= max (f(y), f:(y))-

Hence 8; = {f:}ry 18 closed under (3) and (4), i.e. S, is a d-lattice

under (3) and (4), and the mapping « -> f, is an 1som01ph1sm of S onto
S,. The theorem is proved.

A set § of real functions defined on a certain set X such that with
every pair of functions f, geS and a real number « the functions f+ «,
f v gand f ~ g belong to 8, where f-+« and f v g are given by (3) and (4),
and

(5) (f ~ g)(x) = min (f(x), g())

is a d-lattice. Let us call d-lattices of this type functional d-lattices.
The following sets are examples of functional d-lattices. X denotes
a non-empty set.

ExamprrLe 1. The set of all real functions defined on X.

ExaMpLE 2. The set of all bounded real functions defined on X.

ExaMrLE 3. The set 8 of all real functions defined on X such that
for feS

su]) If(z)—fly)l < 1.

.l’y(

ExaMPLE 4. R" (in particular R) is a d-lattice if we put

(6) (tyy Agy oevy @) S (Bry Bay--ny fu) I a; < B;
for i =1, 2,..., n,

(7) (ayy Ugy evny ap)-ta = (a, +a, ay+a,..., a, - a).

Thus we may say that R" is a functional d-lattice of all real functions
defined on the set {1, 2,..., n}.
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ExavprLE 5. Let X be a topological space. Then the set C(X) of all
bounded continuous real functions on X is a functional d-lattice. In
particular, if X is a discrete space, then we obtain the d-lattice from
Example 2.

Also the set (" (X) of all continuous real functions on X is a functional
d-lattice. In particular, if X is a compact space, then ¢ (X) = C(X).
If X is discrete, then we obtain the d-lattice from Example 1.

ExaAMPLE 6. Let S be the set of all bounded real functions defined
on the set of positive integers N. If v and ~ are given in 8 by (4) and (5),
and if, by definition,

(fHan =fm+ —  for fe8,

then § is a non-metric d-lattice. Hence the d-lattice § is not isomorphic
to the functional d-lattice of all bounded real functions defined on N
(since the last d-lattice is metric), however, they are lattice-isomorphic.

ExamrLe 7. Let S be given as in Example 3 for X = {1, 2} and let §’
and 8’ be functional d-lattices of real functions defined on {1, 2} and
such that

feS = If()—f2) < 2,
fe8” = |f(1)—f(2)i < 1.

Then 8, §’, 8" are metric d-lattices which are isomorphic as lattices.
However, they are not isomorphic d-lattices.

Every functional d-lattice is distributive (as a lattice) but there
cxist non-distributive d-lattices. '
- ExampLE 8. Let 8 be a subset of E* such that

(ayy agy ag)eS ME a; = 05 < o
for a certain substitution (7, j, k) of the numbers (1, 2, 3).

It is easy to sec that the set §, partially ordered by relation <,
where

(ayy Usy a3) S (Byy Bey Pa) Iff ay < By, ay << By and ay < By,
is a d-lattice if we put
(ay, agy a3)+a = (a;+a, uy-t-a, 3+ a).
Let a = (1,0,0), b = (0, 1,0), ¢ = (0,0, 1)eS. Then

(8) (0,0,0) =(anb)v(anc)#an(boec)=(1,0,0).
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Thus S is a non-distributive d-lattice.
Evidently

(ayy agy az) ~ (B, B2y B3) = (min(aly 1), min(a,, 8,), min(a;, ﬁa))

for (ay,as,a3),(Byy B2y P3)ed.

The d-lattice § is modular. Indeed, the d-sublattice S; = {zeS: x;
== min (Z,, %,, ¥3)} is isomorphic to the d-lattice R* hence §;is a distrib-
utive d-sublattice, i = 1, 2, 3. Hence, if a,, a,, a;¢8; for a certain ie1, 2, 3
and

(9) a; & ay, ay NGy & @, a3 S G v Gy,
then
(10) a, = a,.

We shall show that (10) follows from (9) for any a,, a,, a;eS. It is
sufficient to verify the case a;¢8; for i = 1, 2, 3. We can assume a; ¢ a,
and a, ¢ a; for ¢ = 1, 3, as other cases are trivial.

Thus for a; = (a;;, @y, ay3), + =1, 2, 3, we have

Gy ™ Gy = (@g1, Az, Gyg) and Gy v Gy = (a'u’ @y5, Min (a,,, azz))7

a8 Gy < Ay; < Gy ANA @y < O3, < @y ANA Gy < @yy. Since a, ~ a3 S ay,
we have a,, = a3, and since a; < a, v a, we have a,, = a3, = ay.. Thus
(A, = Q13 = Qi3 = Gy, = dg, = @y, Whence a, = a;. The modularity of
8 is proved (see [3], V, § 2, Theorem 2).

ExampLE 9. Let S be a subset of R* such that
(ayy agy gy ag)eS iff o; = ;< ap < a

for a certain substitution (i, j, k, I) of the numbers (1, 2, 3, 4).
It is easy to see that the set S, partially ordered by relation <, where

(ayy ayy agy @) S (B1y B2y By Bu) UL a; < B;
for 1 =1, 2, 3, 4, is a d-lattice if we put
(ay, agy a3, ag)+a = (a;+a, ay+a, ag+a, a4+ a).

We shall see that this d-lattice is non-modular.
DEFINITION 3. The d-lattice S is d-modular if

av(bn(ata) =(avbd)n (a+a)
for every a, beS, a > 0.

Every modular d-lattice is d-modular. The d-lattice S from example
9 is not d-modular (and consequently is non-modular). Indeed, let
a=1(0,0,2 4), b = (4, 4, 0, 0). Then

1,1,2,4) =av (b~ (a+1) #(avwb)~(a+1) =(1,1,3,4).
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ExamPLE 10. Let 8%; = R", where k, I, n =1, 2,... and k1< n,
be the set of all (a,, aq,..., @,)eR" such that

- — = : = ;o :
Xy Qig e Wiy, Ui < Qi

RO, S e S G Sy g0 = Qi g0 = o0 = .

Then under (6) and (7) S, is a d-lattice.

ExampPLE 11. Let (X, x) be a measure space and let a, f > 0. Then

we define 8% as a set of measurable real-valued functions f on X such
that

pleeX: ulyeX: fly) <fl@)} =0} >a
and

uloeX: plyeX: fly) >fla)) = 0} > B
which satisfy
(11) lim y{f'[(a—e,a) v (a,ate)]} =0

e=0

for every aeR (if u(X)< oo, then this condition holds for every measur-
able function).

Then we put

fegiff p{zeX: f(2) >g(@)} =0
and

(f+8)@) = fl@)+& for  f,geSty, EcR.

Under this definition 87, is a d-lattice.

§ 2. In this section we define a metric d in d-lattices. This metrie
may assume the value oo (d does not assume this value if and only if the
d-lattice is metric). The operations v, ~, 4+ turn out to be uniformly
continuous relative to the metric d. Then we show that every d-lattice
can be isomorphically embedded in a complete metric space. Next, we
investigate the interrelations among metric completeness, lattice complete-
ness and hyperconvexity (introduced in [1] by Aronszajn and Panitch-
pakdi). Thus, for instance, every complete metric d-lattice is a hyperconvex
metric space, and thus a complete metric space. At this point we give
a partial solution of the problems stated in [1].

We shall show that in any d-lattice § we can define a metric d in
a canonical way. '

First we have to define some auxiliary notions:

oo if a4+ a P b for all real a,

d*(a,b) = .
inf{a: «a >0 and a+a 2 b} otherwise,
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and respectively (by duality)

‘ oc if a—a & b for all real «,
a” (a,b) =
inf{a: a>0 and a—a < b} otherwise,
where a, beS.
It is easy to see that:
(i) d”(a, b) = d" (b, a);
(ii) if & = b, then d*(a, b) = d™ (b, a) > 0;
(iii) d (a, a) = d (a, a) = 0;
(iv) a—d (a,b) < b < a+d" (a,d); A
(v) d"(a, b)+d" (b, c) = d" (a,¢c), d” (a,b)+d (b,c) = d (a,c);
(vi) d"(a,b) =d"(a,a v b) =d (bya) =d (b, a ~ D).

Let now
d(a,b) = max(d*(a, b), d (a, b)).

It follows from (i)-(v) that the function d is a generalized metrie,
i.e. it differs from an ordinary metric only in that it may assume oo as
its value.

It is easy to see that if d*° d~° and d° are defined in S° analogous-
ly to d”, d and d in 8 (S8° is a d-lattice dual to the d-lattice S), then

d'’°=d, d°=d", and d°=d.

This means that the identity mapping of S onto 8° is an isometry.

In the case of functional d-lattices the metric d coincides with the
usnal metric defined by sup.

We have:

(vii) if @ < b, then d(a, b) = d* (a, b) = d" (b, a);

(vi') & (a,b) = d(a,a ~ b), d"(a,b) =d(a,a o b), and d(a,b) =
max (d(a, a ~ b), d(a, a < b)); ,

(viii) if a = @’ =€ b and a = b’ = b, then d(a’, b') < d(a,d);

(ix) d(a ~ b, a v b) = d(a, b).

For example we shall prove (ix). It follows from (viii) that
d(a ~ b,a v b)>=d(a,b). On the other hand,

@~ b+td(a,b)=(a+d(a,d)~(b+d(a,b)2acb.
Thus
da,by=d " (a~b,avwbd)=d(a~b,a b).

The elements a, b of a d-lattice S are comparable (see § 1) iff d(a, b) <oo
and a d-lattice § is metric iff the function d is an ordinary metric in §.
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The d-lattices given by Examples 2-4, 7-10 and also 11 if ¢ > 0 and
f >0, from § 1, are metric d-lattices. If X is infinite, then the d-lattice
given by Example 1 from § 1 is not metric.

Let us notice that if A: 8§ — 8’ is a homomorphism of a d-lattice §
into a d-lattice §’, then -

d(h(z), L)) < d(@, ¥), @, yeS.

Moreover,

(x) d(@ vy, o oy)<max (d(x, 2), d(y, y'));
(xi) d(x ~ Yy, @ ~y') < max (d(z, '), d(y, ¥'));

(xii) d(z+a, y+a) = d(x, y);

(xiii) d(z+a, 2+ p) = [a—B|.

This shows that any homomorphism of d-lattices is a uniformly
continuous mapping, the operators v and ~ are uniformly continuous
mappings of 8 x § into §, and the operation + is a uniformly continuous
mapping of § x R into §. Hence we obtain:

TuEoOREM 2.1. If 8, is a d-sublattice of any d-lattice S, then the closure
of 8y (in the topology induced by the metric d) is a d-sublattice of S as well.

TueoreEM 2.2. If 8, is a d-sublattice of a d-lattice S and f: S, — S,
i8 a homomorphism of S, into a metrically complete d-lattice S,, then there
exists (exactly one) continuous extension g: S, — S, of homomorphism
f and g is a homomorphism of the d-sublattice S, into S,.

A metric space X, with a metric p, is said to be a hyperconvex (resp.
m-hyperconvex) metric space if for any subset X, < X (resp. for any subset
X, € X with card (X,) <m) and for any real function f: X, — R, satis-
fying the condition f(x)4f(y) > o(x, y) for any =z, yeX,, there exists
an element aeX such that g(a, ) < f(x) for every zeX, (Aronszajn and
Panitchpakdi [1])).

TunroreEM 2.3. Every melric d-lattice S is an R,-hyperconver metrio
space.

Proof. Let z,, z,,..., #,¢8 and let a,, ay..., a, be real numbers
satisfying the condition

a,--}—a,-}d(m,-,:vj), 13,j=1,2,...,'n.

(n being an arbitrary natural number).
Putting

n

U (#i— ),

@ =4

we have T—uo S a, ie. d” ((L"', a) < a;.
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On the other hand, we have

i+ (it ;) 2 2y (for d(z;, ;) < a; + @)
Hence
w,-—{-aigwj—aj, ]=1, 2,..., n,
and

n

rita; 2 UJ(2—a) =a

i=1
and
dt(z;, a) < a;.

Thus d(z;, a) < a; for ¢ =1, 2,..., n and the theorem is proved.

COROLLARY. If every bounded subset of a metric d-lattice S is totally
bounded and S is metrically complete, then S is hyperconvex.

Indeed, it is true for any N,-hyperconvex complete metric space.

Let us recall that the lattices in which every non-empty bounded
(and countable) subset has a least upper bound and a greatest lower
bound are called conditionally complete (a-complete) lattices.

DEFINITION. A d-lattice S is called a complete (o-complete) d-lattice
if it is conditionally complete (s-complete) as a lattice.

THEOREM 2.4. Every complete (a-complete) metric d-lattice S is a hyper-
convex (R,-hyperconver) metric space.

Proof. The proof of this theorem is analogous -to that of Theorem
2.3. Let A = 8 be any (countable) subset and let f: 4 — R be any real
function satisfying the condition f(x)+ f(y) = d(z, y) for z, yeA.

The set {x— f(7)}.s.4 i3 upper-bounded (indeed, if xz,e¢A, then z— f(xz)
€ zy+ f(x,) for every zeA). Thus we have an element a = LJ)1 (z—f(x))

Te.

and d(z, a) < f(z) for arbitrary xeA and the theorem is proved.

THEOREM 2.5. Every o-complete d-lattice S is complete as a melric
space.

Proof. Let (a,), n =1, 2,..., be a Cauchy sequence in S (i.e.
lim d(a,, a,) = 0). Then there exists a natural N such that d(ay, a,)

n,M=00
<a<< oo for n >N. Then ay—ae S a, < ay+a for n > N and there
exists an element

[o =] 00
a=U ) a.
n=1k=n

We shall show that lim d(a, a,) = 0.

n=00
In fact, for every ¢ > 0 there exists a natural number N, such that
d(aN‘, a,) < ¢ for n > N,, le.

ay,—e S a, S ay +¢ for =« >=N,,
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whence

and
o0 - o]
v—aCUﬂa =U N an S ay, +e.
n=1 M=n

Hence for every £ > 0 there exists a natural number » such that
d(a, a,) < e. This shows that lim a, = a for (a,)._, is a Cauchy sequence.

H=00

The theorem is proved. ‘
Remark. Now it is easy to see that in a g-complete d-latticelim a, = a

it B

||C8

-Une-0Y,

LeMMA 2.6, If A is a subset of a d-lattice S and if aeS is an upper
(lower) bound of A, then a-}a ts an upper (lower) bound of the set
A"‘ﬂ = {w+a}2¢A

for arbitrary ueR. In addition, if there exists

Ux (resp. () o),

TeAd TeA
then there exists

U (@+a) (resp. () (x4 a))

Ted TeAd
and
U+ta)=Uaz+a (@esp. N (z+a)=)Tta)
Ted TeAd TeA Ted
for aeR.

Proof. The first part of the above lemma is trivial. For the second
part we have y+a € | z+ a for every yeA. On the other hand, if b

TeA
is an upper bound of A+ a, then z+a = b and z = b— a for every zeA.
Hence

Uzecb—a and Jz+ach.

Ted Ted

The lemma is proved.

The following lemma is & variation on the theme of Mac Neille’s
theorem (see [3]):
LEMMA 2.7. Any set S partially ordered by a certain relation < can

. be imbedded in a conditionally complete lattice §’, 8o that inclusion is preserved,

Dissertationes Mathematicae LXII 80 2
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together with all greatest lower bounds and least upper bounds, and the fol-
lowing two conditions are salisfied:

(a) for any subset A = 8, there exists a greatest lower bound of i(A)
in 8 iff A is bounded from below in S and there exists a least upper bound
of i(4) in 8 iff it is bounded from above in 8.

(b) a =N {xei(8): a ca} =) {rei(8): = < a} for aeg, where
i: 8> 8 is the imbedding.

Proof. Let 8 be a set of all ordered pair (4, B) where A and B are
non-empty subsets of § such that

(i) @ = b for any aeA and beB,

(i) if a pair (A’, B’) satisfies condition (i) and A < A’, B c B/,
then 4 = A’ and B = B'.

It is easy to see that for (A,B)e§ we have

A ={ae8: ¥ a < b}
be3
and

B— {beS: V a < b}.
aeAd

We put (4,B) < (A',B’) iff A < A’. Then (4,B) < (4’,B’) iff
B> B.
Next, we shall show that (S ) is a conditionally complete lattice.

Indeed, let (AO,Bo)eS be a lower bound of U < §. Then Ayc A
for every (A, B)<U, whence

.4.1 = m A # g.
(4,B)U
Let

B, = {beS: V a < b).
ed

Then B, 2 B = @ for any (4, B)e U. Hence the pair (4,, B,) satisfies
condition (i).

Let (A',B')eS, A, = A’ and B, c B'. Then B, = B'. We see also
that B < B' = B, for any (A, B)eU. Hence A 2 A’ for any (4, B)eU
and A, 2 A', i.e. 4, = A’. Thus (4,, B,)eS. It is obvious that (4,, B,)
= (U. Analogously, if U c S is bounded from above, then there exists
(Agy By) = U UeS and

B,= () B, A,=1{ae8:Vy acb}.

(d,B)eU beB,

Thus § is a conditionally complete lattice.
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We put i(x) = ({lyeS: y =z}, {ye8: z < y}) for ze8. It is obvious
that ¢(8) < 'S and (A, B)et(8)iff A ~ B # 0, and then 4 ~ B has exactly
one element. If i(z) = (A4, B), then z¢dA ~ B. Thus if =z ¢y, x, yeS,
then i(x) = i(y). It is also easy to see that the imbedding ¢ preserves all
greatest lower bounds and least upper bounds (hence ¢ preserves inclusion).

We shall verify that conditions (a) and (b) hold. Let a = (4, B)eé.
We put i(u) = (Ay, By) for ueS. Then 4 = {JA,, B ={JB, Hence

tved Ve
a = | Ji(A) = ()¢(B). Thus condition (b) holds. (Moreover, i(A)B= {wei(8):
x < a} a.nd i(B) = {xez(S) a < x}.)
Condition (a) follows from the conditional completeness of S and
from condition (b). The lemma is proved.
If S also has the structure of a d-lattice, then 8 also admits the

strueture of a d-lattice such that the imbedding of 8 into S is a d-isomor-
phism, i.e. the following theorem holds:

THEOREM 2.8. Any d-lattice S can be isomorphically imbedded into
a complete d-lattice S.

Proof. Let § be a lattice satisfying conditions (a) and (b) from
Lemma 2.7. We can assume that 8 is a sublattice of §. Let 4 be a subset

of § bounded from above and a = (U weS. Then it follows from the
Tecd

first part of the lemma that | (z+ a) also exists in S and we define
xed

a+ a as being equal to U (z+a) for aeR (if also a = | « for a certain
reB
B c 8, then of course U (z+a) = U (x4 a)).

TeAd TeB
Then we have
1. a+0 = a.
2. (at+a)+p =a+(a+p).
Indeed,

(@+a)+f = H(m+a)+ﬁ
=Ulleta+pl=Ule+(atp)] =at(ath).
3. acb then a+a = b+ a for a, beS.
In fact,
a=Uw2 b=Upgs,
Ted

TeB

where A = {ze8: v c a}, B = {xe8: 2z = b}. But a < b, whence 4 < B,
Therefore :
at+a=J(z+a) cJ(x+a) —b+a

Ted ZeB
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4. a+a > a for a >0, ael.

Of course, a+a 2 a for a >0. Let a = | Jx, where 4 < 8, and
Ted

let b 2a, beS. If a+a = a, then at+na=a c b, n =1, 2,... Hence
we would have z+na < b for x, beS, xcd, n =1, 2,... and by axiom

6 (§1)
b+1 =ﬂL})%((b+1) (:v+ﬂ)) = U(w+ﬂ) U (+ma) < b.

The contradiction implies a4+ a > a.

. 5'. For any a, beS if a > b, then there exists an ¢ >0 such that

adbte.

If a c b+ ¢ for every ¢ > 0, then for every z, y <8 such that ¢ < a
and b < y we have ¢ < y+ ¢ for every ¢ > 0, whence « < y. Thus a < b
and this contradicts our assumption.

6’. a= (an(b—l—a)) = (au(b—l—a)) a,beS~.
of course, a> U(an b—|—a)) On the other hand, if a = | &,

Zed
b=y, where A4, B c §, then
YeB

U~ (d+a) =U(Uz~(Uy+a)
aeR aeR TeA VeB
—U(Uwr\U (y+ a))

aR Ted

= UUU(wm(era))

Ted yeB aeR

=Jz =a.
zed

Theorem 2.8 is proved.

From Theorems 2.1, 2.5, 2.8 we obtain

THEOREM 2.9. Any d-lattice can be isomorphically imbedded into
a metrically complete d-lattice as a topologically dense d-sublattice.

Remark. Under conditions (a) and (b) from Lemma 2.7, the lattice
8 from Lemma 2.7 and the d-lattice S from Theorem 2.8 and the isomorphic
imbedding ¢: § — S are unique in the following sense: if §, is a conditio-
nally complete lattice or a complete d-lattice and 7,: § — S, is an iso-
morphie imbedding such that conditions (a) and (b) hold, then there

exists an isomorphism k: 8 — 8, such that ¢, = kozq.
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THEOREM 2.10. For any infinite regular (1) cardinal number R,, there
exists an R,-hyperconvexr metric d-lattice S, which is not R, ,-hyperconvex ().

Proof. Let X' and X"’ be disjoint sets, and card X' = card X'' = N,.
By 8§ we denote the functional d-lattices of all real functions f: X — R,
where X = X' o X" such that card (X\f '(a)) <X, for a certain
a=cqa(f)eR.

Let us put

0 if =z #p,veX,

folz) = 1 if x=peX,
—1 if z=peX”,

for peX. Then d(f,, f;) = 1 for p # q and there exists no feS such that
o(f, fu) < %} for all peX. Hence 8 is not R, ,-hyperconvex.

Now we shall prove that if card (4) < 8,, where A = §, and ¢: A > R
satisfies ¢@(f)+ @(g) = d(f, g) for any f, ged, then there exists an heS
such that d(f,h) < ¢(f) for every fed.

Indeed,

card (X\ Qf"(a(f))) <N,

as R, is regular. We put h(x) = sup(f(w)—qa(,f)) for zeX. Then h: X - R
fed
is constant on (M) f~'(a(f)), whence heS, and d(f, k) < ¢(f) for fe A. Hence
Jed

8 is ®,-hyperconvex. The theorem is proved.

Let us remark that under the above notions if x > 1, then the d-lattice
S is isomorphic (and consequently isometric) to d-lattice C(8(X,)), where
X, is a topological space such that X, = {p} v X, pé¢X, and G c X,
is an open subset of X, if and only if p¢G or card (X\G) < R,. Thus from
Theorem 5.2 of paper [1] follows a partial solution of Problem 3 of the
same paper.

THEOREM 2.11. For any regular cardinal number R, > R, there exisis
an R,-extremally disconnected compact space which is mnot N, -extremally
disconnected.

§ 3. The concern of the present section is to study metric spaces.
We consider a class of metric spaces such that to every pair of points a, b
of a space of this class one can assign a point s(a, b), called the central
middle of @ and b, and this assigning is metrically invariant. We can say

(!) The cardinal number z = card Z is regular if there exists no family P of
sets such that card P < 7, card A < 7 for every AP and U P =7Z.

() Recently the author [10] proved that for any finite cardinal m > 3 there
exists an m-hyperconvex metric space, which is not an (m 41)-hyperconvex metric
space (this is the solution of Problem 1 from [1]).
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of a central space, i.e. a metric space X in which an operations: X x X - X
has been defined, that it has been given some (though rather weak) al-
gebraic structure. We also define some smaller classes of metric spaces —
but all these classes contain the class of hyperconvex spaces. For hyper-
convex spaces we prove that the operation s is continuous (this result
and a stronger one are contained in Theorem 3.5). Besides the operation s
we introduce another operation .s. .8 iS a partial operation of a type
gimilar to 8, but it is more regular than s (see Theorem 3.9). The above-
mentioned results can be applied to metric d-lattices, for every complete
metric d-lattice is a central space (see § 4).

Let (X, o) be a metric space. For a bounded non-empty set 4 = X
we denote by Sy (A4), or simply 8,(4), the set of all #eX such that
o(z, ¥) < } diam A for every yeA, and we put

Sui1(4) = 8u(4) ~ 8,(8a(4)) for n=1,2,...

Since
diam S,(4) <diam 4 and diam 8, ,(4) < }diam S,(4)
for n =1, 2,..., we have

lim diam S,(4) = 0.

n=00

Thus the set () S,(A) contains a single-point or is empty. It is
n=1

obvious that §,(4) and consequently the sets S,(A) are closed. If X is
complete and 8,(4) is a non-empty set for every n =1, 2,..., then,

from the Cantor theorem, there exists a point s(A)e () S,(A4) (exactly

Nn=1

one).

For A = {a, b} = X we shall write S,(a, b) instead of S,({a, b})
and s(a, b) instead of s({a, b}).

The set S,(A) is the set of all metric middles of A (of a and b, if
A = {a, b}). The point s(A4) (respectively s(a, b)) will be called the central
middle of A (of a and b) (3). '

DEFINITION 1. A metric space (X, o) is said to be:

an absolutly central space if a point s(4) exists for any non-empty
bounded subset A = X; '

a strongly central space if a point s(A) exists for any non-empty totally
bounded set A = X;

a central space if a point s(a, b) exists for any a, beX.

(3) The idea of a central middle s{(a, b) (for normed linear spaces) is due to
Mazur and Ulam [16].
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For example if a metric space is strongly convex (see [4]), then
S,(a, b) = {s(a, b)} for any points a, b. Hence a strongly convex space
is a central space. On the other hand, an Euclidean plane is a strongly
convex space, but it is not a strongly central space.

It is easy to see that:

(1) if A = B and diam A = diam B, then §,(4) = 8,(B);

(2) if zed and yeS,(4), then d(z, y) < } diam 4.

Hence

(3) SI(A) = SI(A)'

Thus if a point s(4) exists for every compact subset A of a complete
metric space, then this space is strongly central.

TuroreM 3.1. Every hyperconvexr metric space (X, p) s absolutly
central.

Proof. Let A be a bounded non-empty subset of X. Then §,(4) # 9
and 8,(4) is a hyperconvex subspace of X. Hence §,(4) =@ as §,(A)
= 874N(8,(4)) and also 8,(4) is a hyperconvex subspace. Similarly,
by induction §,(4) # © and 8,(4) is a hyperconvex subspace of X for
any n = 1, 2,... Since any hyperconvex space is complete, the theorem
1S proved.

If X is a compact strongly convex space, then the mapping s: X xX - X
is continuous. On the other hand, there exist examples of complete
strongly convex spaces X such that the mapping s: X xX — X is not
continuous (see [8], [15]). We shall prove that the mapping s: X xX - X
is continuous for any hyperconvex space X.

LeMMA 3.2. Let (X, o) be a hyperconvex space. Then
QH(SN(-A)7 S)L(B)} < 2" err(4, B)
for any A, Be2X and n =0, 1, 2,..., where by definition So(Y) = Y for

any ¥ = X (*).

Proof. The case of n = 0 is trivial. Let us assume that for ¥ <{n
the lemma holds and let zef,,;(4). We define a real function
fu: B 8;(B) - R as follows:

} diam B if peB\S§,(B),
fu(p) = { } diam S;(B) it peSk(B)\S8;.,(B), k=1,2,...,n—1,
%‘ diam S,,‘(B) if pESn(B).

#) 2% is the space of all closed bounded non-empty subsets of X and px(4, B)

at . .
= max (sup inf o(z, y), sup inf g(x,y)) for any 4, Be2X.
Ted YeB zeB yed
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Then
{geX: Vv )Q(P, q) < fu(p)} = 8n 1 (B).

pthSl(B

Since 2¢8,,;(4), by the induction assumption it follows that for
peSy(B), where 0 <k < n, we have

e(x, p) < } diam 8,(A4)+ or (Sk(4), Si(B))

} (diam 8(B)+-2 0n (Sx(4), Sk(B)))+ on(8k(4), Sk(B))
3 (diam S,(B)+2 - 2°on (4, B)) +2ex(4, B)

3 diam S, (B)+2""'on (4, B)

diam Sx(B)+2"*'on(4, B)

“*lon(4, B)+fu(p).

Thus o(z, p) < 2" oy (A4, B)+f.(p). Since X is a hyperconvex space,
there exists a point yeS,,,(B) such that

olz,y) < 2n+19H(Aa B).

1

INCINCIN NN

b rop=

Analogously, for any xS, ,(B) there exists a yeS,.,(4) such that
Q((E, ?I) < 2”+IQH(A, B) Hence

o (S1L+1(A)y Sn+l(B)) < 2n+19H(A9 B)
The lemma is proved.
LeMMA 3.3. Let (X, p) be a hyperconvexr space. Then
OH (Sn.;.l(A); Sn+1(B))_ on (Sn(A)’ 8.(B)) < 2—"+1(diam A+ou(4, B))

for any A, Be2X and n =1, 2, ...
Proof. We have

OH (Sn+1 (A)7 Sn+1 (B))

< 9}1(81;+1(A)1 Sn(A)) 4- QH(Sn(A)’ Sn(B))+ QH(Sn(B)7 Sn.yl(B))
< diam 8, (4)+4 diam 8, (B)+ ox (Su(4), Su(B))

< 27" diam A4 27" diam B+ 0x(S.(4), 8.(B))
< 27" (diam A+ oy (4, B))+ ou(Sa(4), Su(B)).

LeEMMA 3.4. Let (X, o) be a hyperconvex space. Then

(4) 0r (S1(4), 8u(B)) < 4V2en(4, B) (diam A + ou(4, B))
for any A, Be2* and n = 1, 2,... Consequently

(5) o(s(4), 8(B)) < 4V20u4(4, B) (diam A + ou (4, B)).
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Proof. Evidently if A = B, then inequalities (4) and (5) are satisfied.
Thus let A # B. From Lemmas 3.2 and 3.3 it follows that

o (8.(4), 8u(B)) < 271+ g (A4, B)+ D 20-*+)-¥[diam A + o (4, B)]
k=0

= 2.2° pu(4, B)+4.27°[diam 4 + oy (A4, B)]

for any « > 0.
" Let

a = 4 (1+1g;(diam A+ oy (4, B)) —1g, en(4, B)).
Then

9 — ‘/z(diam A+ou(4, B))
- QH(A1B)

and we obtain (4). The lemma is proved.

THEOREM 3.5. Let (X, o) be a hyperconvex space. The mapping A — s(A)
is uniformly continuous on any subspace P, < 2~ of all sets A 2% such
that diam A < a, a > 0. The mapping (a, b) — s(a, b) is uniformly continuous
on any subspace D, = X x X of all pairs (a, b)e X xX such that g(a, b) < a,
a>0 (in XxX we consider the melric given by g((a, b), (a’, b"))
= max (Q(a’ a’), ¢ (b, b')))-

Proof. The first part immediately follows from (5). The second
part follows from (5) and from the inequality

ou({a, b}, {a’, b'}) < 9((“’; b), (a’, b’))‘

Remark 1. P, is an open subset of 2% and UP, = 2%, D, is an
a>0

open subset of XxX and |J D, = XxX. Any bounded subset of 2%

a0
(resp. of XxX) is contained in some P, (resp. D,).

Remark 2. If A # B, (4, Be2¥), then in (4) and also in (3) we can
write << instead of <.

The following theorem is evident:

THEOREM 3.6. If X is an absolutely central space, in particular if X
18 a hyperconver space and f: X — X i8 an isometry of X onto itself such
that f(A) = A for a bounded subset A of X, then f(x) = x for some xeX.

Evidently f(s(A)) = s(A).

Analogous theorems hold for strongly central spaces and for central
spaces.

In the sequel we shall use the notions .S,(4) and ,s(4), which are
analogous to the notions §,(4) and s(4). We now begin to define the
 notions ,8,,(4) and .s(A4).
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Let (X, ¢) be a metric space. For a bounded non-empty set 4 = X
and a real number o« > diam A we denote by ,S¥(4), or simply .S, (4),
the set of all z«X such that ¢(x, y) < /2 for every yeA, and we put

Sair(4) = o8, (A) = oBu(d) A o 8i(a8.(4) for n=1,2,...

2n— 1

Let us remark that diam .8,(4) < « and if
(6) diam ,8,(4) < =

then, by definition, diam 8, +1(4) < a/2". Thus inequality (6) holds for
every n = 1, 2,... and the definition of the sets .S,(4) is correct and

there exists at most one point ,s(A)e () .S.(4).

n=1
For A = {a, b} < X we shall write .8,(a, b) instead of ,S,({a, b})
and .s(a, b) instead of ,s({a, b}).

The proof of the following theorem is quite analogous to the proof
of Theorem 3.1.

THEOREM 3.7. For any bounded subset A of a hyperconvex metric space
(X, o) and any real a > diam A there exists an ,s(A).

LEMMA 3.8. Let (X, o) be a hyperconvex space, A,Be2~, A @ # B
and max (diam A, diam B) < a. Then

(7) or(aSu(4), :8u(B)) < op(4, B) for any n =1,2,...,
where S,(Y) = Y for any Y e2¥.

Proof. If n = 0, then inequality (7) holds. Let us assume that it

holds for every k << n. We define a real function f,: B v ,8,(B) — R as
follows:

af2 i pes(B S (B)\.S(B),
fu@) =1a/2 it peSi(B)NuSi(B), k=1,2,...,n—1,
al2®  if  pe.S,(B).
Then
lgeX: v o(p,9) <f(P)} = 8uia(B).

J)EBuasl(B)
Let xe,S,,,(4) and p e Si(B), where 0 < k< n. Since x¢,8:,,(4) and

or(aSk(4), Sk(B)} < ou(4, B),
we have

a
0(@, p) < eu(4, B)+ 5.
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Thus o(z,p) < en(4, B)+fu(p) for any ze,8,,,(4) and p B U, 8, (B),
whence o(z, ¥) < oy(A, B) for a certain ye.S,,,(B) (since X is a hyper-
convex space). Analogously, if ze,8, ,(B), then there exists a y¢.8,,,(4)
such that o(z, y) < on(4, B). Hence QH(aSn+1(A)) aSnJrI(B)) < ou(4, B).
The lemma is proved.

The following theorem is a direct consequence of Lemma 3.8:

TueoreM 3.9. Let (X, p) be a hyperconvex space. Then the mapping
&8 P, —> X and ,s: D, - X (see Theorem 3.5) are melric mappings.

Each of the functions s and ,s has its own advantages. The function
s is defined on a larger set of elements. Moreover, the sets S,(4) converge
to s(A) faster than the sets ,§,(4) converge to ,s(4); sometimes we can
obtain the point s(A4) after a finite number of steps. But, on the other
hand, for the function ,s Theorem 3.9 holds. Therefore, an especially
interesting class of spaces is formed by those spaces for which the functions
s and ,s coincide on the set D,. Unfortunately, this class does not contain
all the metric d-lattices. We shall show, however, that every metric
d-lattice whose d-sublattices generated by two of its elements are all
distributive belongs to this class.

§ 4. In this section we use the concepts introduced in the preceding
section and the results of that section. We prove that every metrically
complete metric d-lattice is a strong central space. Moreover, it does
not matter whether the central middle of a totally bounded subset of
such a d-lattice is considered in a given d-lattice or in its arbitrary exten-
sion. In this sense the central middle is absolute (see Theorems 4.4 and
4.6). The operation A — ,s(A), where A runs over all compact subsets,
is continuous, just as the operation .s (a stronger result is given in Theorem
4.7). In the case of functional d-lattices it turns out that s(f, g) = (f+¢g)/2
(see Theorem 4.8). Hence it is immediate that a metrically complete
functional metric d-lattice is a linearly convex set of functions (ef. {13]
and []17]). The operation 4 — ,8(A), though less universal, has a more
regular algebraic character (see Theorem 4.13) than the operation 4 — s(A),
for the first operation is preserved under homomorphisms, i.e. h(as(A))
= ,8(h(4)) for any homemorphism % of two d-lattices (see Theorem 4.14).
If every d-sublattice of a given d-lattice generated by two elements is
distributive, then the two operations coincide (on the set on which s
is defined, see Theorem 4.16). Thus every homomorphism of metric
functional d-lattices is affine (Theorem 4.17). :

Let 8 be a d-lattice and @ # A = 8. Then diam A < oo iff there
exist a lower bound p and an upper bound ¢ of 4 such that d(p, ¢) < oo.
Hence if diam A < oo, p = () 4 and q = (J 4, then d(p, q) < oc.

LEMMA 41. If p =Y A and ¢ = \J A for a subset A of d-lattice S,
then diam A = d(p, q). ,
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Proof. From (viii) of § 2 follows diam 4 < d(p, ¢). We shall prove
the converse inequality under the assumption of diam A < co. Then
d(p, q) < co. For any ¢ > 0 there exists an element xeA such that

z¢(p+dp,9—¢ g

But # < ¢, whence x ¢ p+d(p, q)—¢ and z—d(p, ¢)+¢ & p. Thus
there exists a yed such that

y2(z—dp,9)+evp

and then y  r—d(p, q)+¢. Hence d(z, ¥) > d(p, ¢g)—¢. The lemma
is proved.

LEMMA 4.2, If A 48 a non-emply subset of a d-lattice S such that
diam A < co and p =) A and ¢ = | A4, then
(1) 8.(4) = 8i(p, Q) = {2eS: ¢—4d(p,q) s» s p+id(p,q)} #0.

In particular

(2) S,(a,b) = {xeS: a wb—3}d(a,b) cx ca~btid(a,bd)}
for any comparable a, beS.
Proof. If

(3) 9—%d(p,q9) cs>x cpt+idp,q
and yeAd, then

v—3d(p,q9) spsy<sqcsrtidip,q
whence

max (d('ﬂf p), d(x, q), d(z, .'/)) < id(p, ),
i.e. zeS;(A) and zeS,(p, q¢). On the other hand, if xeS,(4), then

t—4d(p,q) €y cx+id(p,q
for any yeA, whence

r—3dp,g) csNA=pcqg=UA4A cz+}dp,q),

i.e. zeS,(p, q). But if xeS§,(p, q), then evidently condition (3) holds.
Thus equalities (1) are proved.

Since ¢ < p+d(p, q) for any comparable p, geS, we have g—
—3d(p,q) = p+3d(p,q). Thus for © =q—13 d(p, q) condition (3) is
satisfied and consequently 8,(4) # @.

Equality (2) follows from the above equality (1) and from equality
(ix) of § 2. The lemma is proved.

DEFINITION 1. We put z|ly iff #4- « = y for a certain a¢ R and we put

xly iff © ~ y|lx v y but the relation x|y, where z, y are the elements
of a d-lattice 8, does not hold.
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Thus 8;(z, y) is a one-element set iff = ~ yllz v y, i.e. 2|y or xIy.
We put for a comparable pair a, b of elements of a d-lattice S

s{(a,b) =a v b—3%d(a,b),
sl(a,b) =an~b+id(a,bd),
8ui1(a, b) = su(a,b) v (s”(a, b)— 4 d(s.(a,b), s"(a, b))),

" (a, b) = s"(a, b) ~ (8n(a, b)+ % d(sa(a, b), s"(a, b)))
for n =1, 2,... _
It is easy to prove by induction that
(4) 8.(a, b) c s"(a,b).
We shall prove that '
(8) Sp(a, b) = {xeS: s,(a,d) cz = 8"(a,d)}, n=1,2,...

For » = 1 formula (5) holds. Let it holds for a certain n. Then it
is obvious that
Spi1(a, b) = 8,(a, b) ~ 8,(S.(a, b))
= Sn(a, b) ~ 8,(sn(a, b), s"(a, b))
= {zeS: sa(a,d) < @ = s"(a,b)} ~ [ze8: s"(a, b)—
—3}d(sn(a, b),s"(a, b)) = @ < su(a, b)+ } d(sala, d), s"(a, b))}
— {weS: sn(a, b) v (s"(a, b)—} d(sa(a, b), s"(a, b))

< @ < 5"(8,b) ~ (a(a, b)+ 1 d(sala, b), 8" (a, b))}

= {xe8: 84,1(a,b) =z = s"(a, b)},

thus (5) hblds and by (4) S.(a, b) is a non-empty and closed set for every
n=1,2,..
Hence if A = 8, diam A< oo, p = () 4 and ¢ = |J 4, then

(6) S8p(4A) = 8p(p.q) #9 for n=1,2,...

LEMMA 4.3. If A is a tolally bounded (but not necessarily bounded)
subset of a metrically complete d-lattice S, then there exist U A and [ A.
Proof. Let A, be a finite (1/n)-net of 4 (i.e. 4, < A and min d(a, z)

aed
< 1/n for every zed) for n = 1,2, ... Then "

1

' 1
ﬂAn—-ﬁgngAmL;
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for any xeA, whence
1 1
d(n Anﬁ n Am) < max (;,7"‘—)
and
1 1
d{U A, U A,,,,) < max (—,—),
n’m
since, for example,

1 1

where m, n = 1, 2,... Thus from (i) of § 1 it follows that
U4 =1lim|JA, and (4 =1im() 4,.

fi=00
The lemma is proved.
From the above we obtain

THEOREM 4.4. Any melrically complete metric d-lattice S is a strongly
central metric space.

Remark 1. The assumption that the d-lattice 8§ is complete as
a metric space is essential. For example, let S be the set of all real-valued
functions defined on I = [0,1] such that for every feS there exist 0 << «;
<< ...< a, <1 such that

F(@t) = f(a) +e(t—a),

where ¢, =1 or —1, ¢; <t< @y, t=0,1,...,7m ¢y =0, a,,, = 1.
Then 8 is a functional metric d-lattice and for f, geS such that
f(t) =1, g(t) = —1t for tel, there exists no s(f, g)

LEMMA 4.5. Let A be a totally bounded subset of a d-sublattice S of
a d-lattice 8'= (8, U, (), +) and let a={J' A eS8 (resp. a= () Aef').
Then a= (' {reS8: ac z} (resp. a= ' {ze8: z< a}). Hence if ael,
then a = | A (resp. a = (") A).

Proof. Let a = (J Ae8’ and a" = {J 4,, where A4, is a finite
(l/n) -net of A,n=1,2,... Then a"e8 as well as a"+1/ne§ and
a'caca —|—1/'n whence '

a = Ua"=ﬂ{weS: a S xz}.

n=1

The lemma is proved.

THEOREM 4.6. Let A be a non-empty totally bounded subset of a d-sub-
lattice S of a metric d-lattice 8' = (8', ), ﬂ +) and let ae8. Then a =s(A)
n 8 iff a =8(A) in §'.
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Remark 2. If 4 == {z, y}, then Theorem 4.6 immediately follows

from the fact that the point s, (2, ¥) just as s"(z, ¥), is the same in § and
in 8 n=1,2,...

Proof of Theorem 4.6. The d-lattice S is a d-sublattice of a certain
metrically complete metric d-lattice 8'. Thus it is sufficient to prove
the theorem under the assumption that 8’ is metrically complete. Then
there exist a p = () 4, a ¢ = {J 48 and

8,(4) = {ze8: 8,(p, @) s @ = sp, )},
where we write S,(A4) for 85(A). From Lemma 4.5 it follows that
('8i(4) = si(p,¢) and J'8,(4) = sYp, q).
Thus if a = s(4) in § or in §’, we obtain

('S:(4) =38(p,q) sa =8 (p,q = U84
Let us assume that

(N Su(4) = {ze8: s,(p,q) <= = 5"(p, 9)}

and .

(8) (V'8u(A4) = su(p,9) S a S8 (p,g) = U'Su(4)
Then in both cases (¢ = s(A) in 8 or §’) we shall prove

(9) Sni(4) = {weS: sau(p,q) s 2 =8 (p, q)}

and

(10) (Y 8ns1(4d) =80 1(p,9) Sa =" (p,q) = U Snin(4

Equality (9) immediately follows from (7) and (8).
Let ar = () Az and a* = |J 4;, where A; is a (1/k)-net of A,
k=1,2,.. Then s,,,(ax, a*), 8" (as, a*)eS and
l%im Sny1(ary a’k) = 8,1(pyq), lim an(aky a'k) st (»,9).
=00 =00
From (8), in the both cases, it follows that aeS, ,(4) and s,,,(p, 9)

ca c 8" (p,q) (if one of these assertions is an assumption, then the
second one is a corollary).

Moreover,

$ni1(Py@) = ) [(sni-l(aky “k)+d(3n+l(a’k9 a’k)’ Snpa (P, Q))) a a']a

k=l

whence $,,,(p,¢) = () Sny1(4) and similarly §"*'(p, ¢) = U Sns1(4).
"Thus formula (10) is proved. Hence (7) and (8) hold for any positive
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integer n. It means that if = s(4)in 8, then a = 3(4)in 8’ and conversely.
The theorem is proved. :

From Theorems 2.8, 3.5, 4.5 and 4.6 we immediately obtain

THEOREM 4.7. Let S be a metrically complete metric d-lattice. The
mapping A — s(A) is uniformly continuous on any subspace C, < 25
of all compact sets A 2% such that diam A < a, a > 0. The mapping (a, b)
— s(a, b) s uniformly continuous on any subspace D, < Sx8 of all pairs
(a, b)eSxS such that d(a,b) < a, a > 0.

THEOREM 4.8. If 8§ is a functional d-lattice of functions defined on X,
then s(f, g) = (f+g)/2 (if s(f, g) exists) for every comparable f, geS. Hence
if, in addition, 8 is a metrically complete metric d-lattice, then S is a convex
subset of the linear space 8' of all functions on X.

Proof. The notions of s,(a, b) and s"(a, b) are dual. The map
¢: 8" =8, where ¢(u) =F+g—u, uelS’, is a dual automorphism of the
d-lattice 8’ and ¢(f) = g, ¢(g) = f. Thus

(11) o(s.(f,9) =5"(f,9) and ¢(s"(f,9) = s(f, 9
whence
‘P(Sﬂ(fsg))z’sn(f’g)a n=1,2,...

and
o((s(f, 0)}) = qa(fjl 8.(f, 9)) = ﬁ (8u(f, 9))

= né S.(f,9) = {s(f, 9)},

whence f4-g—s(f,9) = s(f,g9)and s(f,g) = (f+ ¢)/2. The theorem is proved.

Remark 3. The assumption that the d-lattice S is metric is essential,
i.e. there exists a metrically complete functional non-metric d-lattice §
of the real functions defined on an infinite set X which is not a convex
subset of the linear space of all functions on X.

Remark 4. We have also

(12) blh ot e) =0 =12

sinee by (11)
3sn(f,9)+5"(f, 9) = 3(9(sa (S, 9)) + 2(s" (£, 9)))
_ q)(sn(f’ g)+s°(f,9) )

2
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The following example shows that Theorem 4.6 does not hold for
any bounded subset A of a d-lattice S.

ExAMPLE. Let 8 = C(N) (see § 1, Example 5) and let S be a d-sub-
lattice of all real functions f: N — R such that lim f(n) = f(1)—2. We
put e

for k<n

2 -
f_n(k)_—_l n,k=1,2,...

0 for k>n
Then for 4 = {f,, fa,...} we find that a real funection ge8§ given by

. 3 {for k=1 r— 1.9
9% =1, for . k>1 oot
is the unique middle of the set A in 8, whence g = s(4) in &, but in §
we have h = §(4), where

2 for k=1
h(k) = EF=1,2,...
\1 for k>1
as h=3(M" 4+ U’ 4).

Now we shall show that if 2: § — 8’ is a homomorphism of a metrically
complete distributive metric d-lattice S into a d-lattice 8, then k(s(4))
= s(h(A)) for any non-empty totally bounded subset A of §. For this
purpose we shall consider the sets ,S,(4) and we shall show that for
such a d-lattice S we have s(A) = ,s(4). More precisely, it is sufficient
to consider the notions of ,s,(a, b) and .8"(a, b), which are defined below.
But first let us remark that

LeMMA 4.9. If A is a non-empty totally bounded subset of a metrically
complete d-lattice S and h: 8 — 8’ is a homomorphism of S into a d-lattice S,
then

(U A)=UhA4) and Rk(()A4)=()I(4).
Proof. U4 =1lim (JA4,, where 4, is a finite (1/n)-net of A. Thus

UR(4) € h(U4) = lim k(UA,) = imUh(4,) € Uh(4),

N=00

since h is a continuous mapping.

The proof of the equality ([ YA) = (k(4) is dual. The lemma
is proved. ‘

Now let § be an arbitrary d-lattice and let a, b be a comparable pair
of the elements of S. We put

#1(a,b) = a v b—1a,

S (a,b) =a~bit}a

Dissertationes Mathematicae LXII 3
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and 1
aSni1(@, b) = uSn(a, b) v (asn(“, b)— ;)_na)’
n41 n 1
& (ay,b) = 8 (a,b) ~|Sn(a, b)+—27a
for n =1, 2, ...
It is easy to prove by induction that

Snla, b) < oS"(a, b),

n 1
d(asn(a, b)a a$ (a'7 b)) = 211._—1
and
LeMMA 4.10. If A is a non-empty subsel of the d-lattice S such that
diam A < oo, p = (4 and ¢ = | JA, then

n

Sp(d) = {xeS: s, (p,¢) €2 =S (p,9)}, n=1,2,...
for a > diam A. In particular, if a, beS and a > d(a, ), then
Sp(a,b) = {reS: s,(a,b) =z c s"(a,d)}.

The following theorem is a direct consequence of this lemma:

THEOREM 4.11. For every non-empty totally bounded subsel A of a metri-
cally complete metric d-lattice S there exists a point ,s(A).
We have also

THEOREM 4.12. Let A be a non-emply totally bounded subset of a d-sub-
lattice 8 of a metric d-lattice §" and a<8 and a > diam A. Then a = ,s(4)
in 8 iff a = .s(4) in 8.

TiHeEOREM 4.13. Let S be a metrically complete metric d-lattice. The
mapping A — ,8(A) is metric on the space C, (see Theorem 1.7). The mapping
(a, b) — 8(a, b) is metric on the space D,.

The proofs of Theorems 4.12 and 4.13 are analogous to the proofs
of Theorems 4.6 and 4.7.

Evidently for any homomorphism % of d-lattices we have
asn(h(a'), h(b)) = h(asn(a')y asn(b))y
asn(_h(a’)1 h(b)) = h’(asn(a’% asn(b))y
where a > d(a, b). Thus from Lemma 4.9 it follows that
Sa(h(4)) = hlsa(4)),  S"(A(4)) = 2(s"(4))
for any totally bounded A. Thus we obtain

THEOREM 4.14. Let h: S — 8’ be a homomorphism of a metrically
complete metric d-lattice S into a metric d-lattice 8'. Then

s(h(4)) = h{,s(4))
for any non-empty totally bounded subset A of 8 and real a > diam A.
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Now, let S be a distributive metric d-lattice. Any such d-lattice
is isomorphic to a metric functional d-lattice (see Kaplansky [13] and
also § 5 of this paper). Thus we can assume that § is a functional d-lattice
defined on a certain set X. Then for a, beS, zeX, a > d(a, b), as is easy
to see, we have

(13)  3(a8u(a, b)+as"(a, b)) (x) = d(a(x)+b(w) for =n=1,2,...
Hence, if in addition § is a metrically complete space, then
S(a, b) = s(a,b).

Let us remark that all the elements ,s,(a, b) and .s"(a, b) are contained
in a d-sublattice generated by a and b. Thus we obtain

THEOREM 4.15. Let 8§ be a metrically complete metric d-lattice such
that every d-sublattice of S generated by a pair of its elements i3 a distributive
d-lattice. Then ,8(A) = s(A) for any totally bounded A = S and real
a > diam A.

The following theorem is a direct consequence of Theorem 4.14
and Theorem 4.15:

TirorEM 4.16. If, under the assumption of Theorem 4.15 about S,
a mapping h: 8 — 8’ is a homomorphism of a d-lattice S into d-lattice S',
then h(s(A4)) = s(h(A)) for any totally bounded subset A of 8.

ExamrLe. Let 8 be a d-lattice given by Example 9 of §1,
a= (0, —1, —3, —3), b = (0,0, 2, 3). Then

8,(a, b) = ¢s,(a,b) =(—-3, -3, —1,0),
si{a,b) = (' (a,b) = (3,2,0,0),
and
8y(a, b) = ¢83(a, b) = (0, —1, —1, 0),
8*(a, b) = (8%*(a, b) = (0,0, 0,0).
Thus from (12) and (13) it follows that
s(a,b) = (s(a,b) = (0,4, },0),

as each of the elements s,(a, b) = ¢3,(a, b) and s?(a, b) = ¢8%(a, b) belongs
to a funetional d-sublattice §' < S of all the elements (a,, a,, a,, a,)eR*
such that a; > a; = a3 < a,.

On the other hand,

eS1(a, b) = (—4, —4, =2, —1), st (a, b) = (4,3,1,1),
eS2(a, b) = (0, —1, —1, —1), e8*(a, b) = (0,0,1,1),
s(a, b) = (0, —1, —1, —1), e8*(ay b) = (0,0,1,1),

sSa(a, b) = 334(a7 b) = gs(a, b) = (0,0,0,0).
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Hence s(a, b) # ¢s(a, d).
Let us remark that the d-lattice S, as a complete d-lattice, is a hyper-
convex space (see Theorem 2.4).

THEOREM 4.17. If 8 and 8, are functional metric d-lattices defined
on the sets X and X, respectively and f: S — 8, is a homomorphism, then
there exists an affine mapping F: L — L, (i.e. such that F — F(0) is a linear
mapping), where L and L, are the linear spaces of all real functions on X
and X, respectively, such that F|S = f.

Proof. Let S and S, be the closures of § and S, in L and L, (under
uniform metric). Then § and S, are the metrically complete d-sublattices
of L and L, (see Theorem 2.1) and they are convex sets (Theorem 4.8).
By Theorem 2.2 there exists an extension f: § —S,, which is a lattice
homomorphism. It follows from Theorems 4.8 and 4.9 that

- b
) = o0, 00 = o700, 7wy = 7T
for any a, beS. Hence
k 2” k k- 2" —k .
lgra+ g t) =g+ 2 255

for any a, beS and positive integers n, k such that 0 < k < n.
Since f is a metric mapping, we have

flaa+(1—a)b) = af(a)+ (1—a)f(b)

for any a, beS and real a such that 0 < « < 1. Such a mapping f has an
affine extension ¥: L — L,. The theorem is proved.

§ 5. In this section we give a new proof of the representation theorem
for distributive metric d-lattices. The proof is based on the notion of
bunch which plays a role similar to that of a coset relative to an ideal
in rings.

The following is the main theorem of this paragraph:

THEOREM 5.1 (Kaplansky’s representation theorem [13]). Every
distributive metric d-lattice S is isomorphic to a functional d-lattice.

This theorem implies

THEOREM 5.2. Every distributive metric d-lattice is isomorphic to a certain
functional d-lattice of bounded real-valued functions.

Indeed, it follows from Theorem 5.1 that § may be considered as
a certain d-lattice of functions defined on a set X. Let f,eS. For every

geSlet ¢ = g—f,. The map g — ¢’ is an isomorphism of 8 onto a certain
d-lattice of bounded real functions.
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For the proof of Theorem 5.1 we have to construct a set X and
a canonical isomorphism of § into the functional lattice of real functions
defined on X. We begin with the following remark.

Let f: 8§ — 8’ be a homomorphism of a d-lattice § into a d-lattice §’
and let peS’. Then the set P — f~'(p) has the following properties:
(B1) P is a sublattice of d-lattice 8.

(B2) If a, beP, then the elements a, b are linked, briefly aQb, where
by definition the elements a, b are linked iff

at+ed¢b and b+efa forany e>0.

(B3) If a < b < ¢ and a, ceP, then bel.

DEFINITION 1. A non-empty subset P of a d-lattice § is called a bunch
if conditions (B1) and (B2) are satisficd for P and it is called a pseudo-
bunch if the condition (B2) is satisfied.

Obviously no pseudo-bunch is a d-sublattice.
Now X is defined as the set Z2(8) of all maximal bunches of §. In
order to define the canonical isomorphism @ we shall prove first that:
If § is a metric distributive d-lattice, then a bunch P is maximal
in S iff for every xS there exists a £ (exactly one) such that x— &eP.
We define @(x) as the function which at the maximal bunch PeZ(S)
assumes the value £, where £ is as above. It will be proved that @ is the
required isomorphism.
Obviously
(i) aQa;
(ii) if a@b, then bQa;
(ii1) if a« 5% 0, then the relation a (a-+ «) does not hold;
(iv) if a@)b, then (a+a)Q(b+ a);
(vyif a=sbcd, a cc¢<dand a@d, then bQc;
(vi) if @« = b = ¢, aQd and cQd, then bQd;
(vii) if lim a, = b and @,Qb for n =1, 2, ..., then aQb.
We need some lemmas.

LEMMA 5.3. If S is a d-lattice, a, beS, a #« b, and if a, b are comparable,
then there exists a real number a % 0 such that the elements

(at+a)wd and (a+a)~Db
are linked. Hence the elements a-a and b are contained in a bunch
{xe8: (a+a)~b =z = (a+a) v b}.
Proof. From the assumptions we have

0<di(a,b)<oo or O0< d (a,b) < oo,
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- Let 0 < d*(a, b)<< oo. Then b < a+d+(a, b) and b+¢ & a+d+(q, b)
for any £ > 0. This means that a+ d " (a, b)Qb. Thus in this case the proof
of Lemma 5.3 is complete since

(a+d*(a,d)) v b=a-+d"(a,bd)
and
(a-+-d*(a,b) ~ b = b.

Analogously one can prove the lemma for 0 < d (a, b) < oo.

Propositions (vi) and (vii) imply that the set {u: (a+ a)@Qb} is a finite
or infinite closed interval. It is not difficult to see that if d* (a, b) < oo,
then this interval is bounded from above (if d™ (a, b) < oo, it is bounded
from below).

LeMMA 5.4. If P is a pseudo-bunch in a metric d-lattice S and aeS,
then there exists a real number & such that P o {a-- &} is a pseudo-bunch
The smallest of these numbers is

a = sup{é: H(a+ & < o))

TP

and the largest one is

B = mf[f a+5 > x)}.

(Both sets within the braces are mon-empty since S is a metric d-lattice.)

Proof. Let yeP. For every & >0 there exists such an xeP, that
a-t+o < z+ ¢/2. Since yQz, we have y+¢/2 d rand y+e & a+ .

On the other hand, a+a+e 4 y. Hence (a+a)@Qy for yeP and
P o {a+ a} is a pseudo-bunch. But for £ >0 there exists an xze¢P such
that a4+ a—e¢/2 < x. Thus the relation (a+ a—¢)Qxr does not hold and
the set P v {a+ a—e} is not a pseudo-bunch. Hence o« is minimal.

Similarly one proves the remaining part of the lemma.

The union of a monotonic family of pseudo-bunches (resp. bunches)
is a pseudo-bunch (bunch). Therefore .the Kuratowski-Zorn theorem is
applicable and every pseudo-bunch (bunch) is contained in a certain
maximal pseudo-bunch (bunch). For any maximal pseudo-bunch (bunch)
condition (B3) is satisfied (use (vi) and (vii)). Any maximal bunch and
any maximal pseudo-bunch are closed sets.

LEMMA 5.5. If 8 ¢s a melric d-lattice, then a pseudo-bunch P is maximal
in S iff for every xeS there exists exactly one & such that x— &eP.

Proof. Let zeS. From Lemma 5.4 we infer that if P is a maximal
pseudo-bunch, then there exists such a number & that P o {x— &} is
a pseudo-bunch. Thus x— £ eP. Now the uniqueness of £ and the impli-
cation in the opposite direction follow immediately from (iii).
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The above lemma does not hold for non-metric d-lattices (see The-
orem 5.8).

LrmaMa 5.6, A maximal pseudo-bunch P of a metric d-lattice S is
a bunch iff the mapping x — &, xeS§, given as in Lemma 5.5, 18 a functional
on 8.

Proof. Let a maximal pseudo-bunch be a bunch and let z, yeS,
¢ nelR and z— &, y—nel. Then

(z2—E&)n(y—n) sz ~y—min(é, n) € (x—§&) v (y—n)
and
(=&~ (y—y) Sexvy—max(é,n) € (x—§) v (y—1n).

Since, P being a bunch,

(—&) A (y—n), (6—§&) v (y—1n)eP,
the elements
x~y—min(&,n) and x o y— max(&,n)

belong to P, i.e.
x~y—>min(é, ) and «oy->max(é,n).

Now we shall show that if the mapping « — § is a functional, then
2 maximal pseudo-bunch P is a bunch.

Indeed, P is a counter-image of 0 under the mapping x — & The
lemma is proved.

LeMMA 5.7. In a melric distributive d-latlice S every maximal bunch P
is @ maximal pseudo-bunch.

Proof. Let P be a maximal bunch in § and suppose that it is not
a maximal pseudo-bunch. Then there exists an aeS such that a4 &¢P
for all é. Let a and f be the real numbers defined in Lemma 5.4, For all
Eel[u, f] we have (a+ &)Qx for any xeP.

Moreover, for z, yeP we have ((a+a) v 2)Qy.

In faet, (a+a) v z+e ¢y for € >0 since £+¢ ¢ y. On the other
hand, a+a = 24 ¢/2 for any € > 0 and a certain 2 = 2(¢)eP. If we had

Yy+ec(ata)vr c(z+ef2)vw c2vuatel2,

then we would have y+¢/2 < 2w zeP contrary to y@z v z (P being
" a lattice). Thus y+¢ ¢ (a+«) v x, whence ((a+ a) v z)Qy.
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Because of duality we also have (a+8) ~ 2Qy for z, yeP. We shall
show that (a4 y) o @Qy for arbitrary x, yeP, or (a4 y) ~ zQy for any
z, yeP. We know that

(a+y)vat+edsy and y+egf(at+y)ma

for z, yeP. If our assertion were not true, i.e. if there existed elements
Xy, Ty Y1, Yy such that the relations (a+y) v z,Qy, and (a+y) ~ 2,Q¥,
did not hold, then we would have

Yte cat+y)vwe, and (a+y)~adte S,

for a certain ¢ > 0.
From these inclusions it follows that

(M nzete)n(aty) S (@te)n(aty)Son(aty)te sy, o VY,
and
ZyuYsvlaty) 2@ viaty) 2+ 20~ 2t
whence
(Yyrn2yte)mn(aty) S o0y,
and
Y1~ Tate S (T v Ys) v (at 7).

It follows from the distributivity of § that y, ~ 2,4+¢ = 2, w ¥,;
indeed if p ~q =7 and p < r v ¢, then

p=pnrovg=p@Pnrv@ngsPnrur=r
contrary to ¥, ~ 2,Qz, v y, (for P is a lattice and a pseudo-bunch). Thus
our auxiliary assertion is proved.

Proposition (vii) implies that the set P’ of all elements peS such
that pQx for all zeP is closed. For ze§8 let ¢,: R - 8 be defined by
¢z(y) = (a+7y) v z and let y,: R — 8 be defined by y.(y) = (a-+y) ~ 2.

The mappings ¢, w. are continuous. Thus the set M of all y such
that (a+y) o zeP’ for all zeP is closed. Similarly, the set N of all y
such that (a+3y) ~ zeP’ for all zeP is closed.

As we have just proved, every number belongs to one of these closed
sets and each of them is non-empty (a belongs to the first, § — to the
second one).

Thus there exists a y,¢[a, f] such that yoe M ~ N.

Let us now consider the set T of all elements z¢8 for which there exist
z,yeP with ¢ < 2 < (a + y,) v y. This set contains P, it is also a lattice
(fxczc(aty)vvy and 2/ €2 c(at+y)vy, then z~z" <2~
~ZSzuz < (aty) o (yoy)) and (by (v)) it is a pseudo-bunch.
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Thus, by the maximality of P, it must coincide with P. But T contains
all elements (a+ y,) v ¥, and thus (a+ y,) v yeP for yeP.

Similarly, it can be shown that (a+ y,) ~ yeP for yeP. Thus we
have proved that P v {a+y,} is a lattice. It is also a pseudo-bunch for
at+a < aty, € a+p. Consequently, it is a bunch. Thus a4 y,eP,
contrary to the assumption about a.

Proof of Theorem 5.1. The canonical isomorphism is defined in
the following way: for ge8 the map f;: #(8) — R is defined on the set
2 (8) of maximal bunches by:

Pe?(8S)

q—aeP = Jo(P) = a.

Lemmas 5.5 and 5.7 imply that functions f, are well-defined,
real-valued and defined on the entire 2(S). ,

Lemma 5.3 implies that for a pair of distinet (comparable) elements
of § there exists a maximal bunch containing only one of them. Thus if
g, ¢"<8 and ¢ # ¢, then f, # f,». Thus the mapping q — f, is 1-1.
Lemma 5.6 implies that the transformation ¢ — f; is a homomorphism.
The theorem is proved.

THEOREM 5.8. If a d-lattice S is non-metric, then for every xeS there
erists a maxrimal pseudo-bunch P (and also a maximal bunch P) such that
x—ad¢P for all aeR.

Proof. If a d-lattice S is non-metric, then there exist a, beS such
that d(a, b) = oo.

Then for an arbitrary (but fixed) z¢S we have

d{a,z) = o0 or d(z,b) = oo;

we may assume that d(z, a) = co. Then d*(x, a) = oo or d (2, a) = oco.
With no loss of generality we may assume that d* (z, a) = co. Let ¢ = a U «.
Then d™(x, ¢) =0 and d* (x,¢) = oo. Let ¢, =c¢c v (z+n), n=1, 2,...
The sequence {c,} is a bunch for ¢, Qc,, k, n =1, 2,...

In fact, for ¥ < » we have ¢ < c¢,. Therefore, forno ¢ >0, ¢, + ¢ E ¢.
On the other hand, c¢;+¢ P c+e.

If we had ¢+¢ = ¢, =¢ v (z+n), then by Lemma 1.3 we would
have ¢+e< x+mn, contrary to the assumption d*(z,¢) = co. Thus,
for no € >0, ¢c+¢ = ¢, and a fortiori ¢+ ¢ < c,.

Let a be arbitrary. Let n be such that » > 1—a. Then (z—a)+1 < ¢,
whence the relation (x— a)Qe¢, does not hold for such ». If P is an
arbitrary maximal pseudo-bunch or bunch containing the sequence
{c.}, then obviously there is no a for which —aeP. The theorem
- is proved.
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§ 6. In the present section we introduce the Tychonoff topology
in the set §° of all functionals defined in a metric distributive d-lattice
8. If we divide the topological space S8° by a relation || (see Definition 1),
we obtain a compact space S /|. The d-lattice S is isomorphic to the
perfect d-lattice defined on 8/ (see Definition 2, cf. [13]). Next, to each
homomorphism F: § — 8, of distributive metric d-lattices there corre-
sponds a continuous map F'[||: 8/|| = §/|l, so that we obtain a contra-
variant functor from the category of distributive metric d-lattices to the
category of compact spaces (actually we know more than that, see Theorems
6.6 and 6.9).

For a metric functional d-lattice S defined on a set (a topological
space) X there is a canonical map (continuous map) (/i): X — S/l
If § is a perfect d-lattice, the canonical map turns out to be a homeo-
morphism into. In this way we can obtain all the compactifications of
a space X (Theorem 6.8).

Let 8" be the set of all functionals on S, where § is a metric distribu-
tive d-lattice. It follows from the theorem that the function ¥
from 8 into the functional d-lattice of all real-valued function on §°
defined by

(P)(f) = flx), weS, fef,

is an isomorphism of 8 onto ¥ (S).

Thus we can introduce in § the weakest topology such that all
functions ¥(z) are continuous, zeS8. The family of all subsets of S of
the form ‘

k2

m {feS.: oy <f(.1‘i) < pi}

t=1

where z;e8, a;, fieR for i =1, 2, ..., 0, n =1, 2,..., is the base in this
topology, which from now on we shall call the weak topology in §. The
weak topology is never compact, but we can replace S by a compact
subspace X such that the restriction ¥(x)| X, for any ze§, gives an iso-
morphism of ¥(8) into the functional d-lattice of functions on X. A subspace
X can be taken as the subspace S, of all functionals fe 8 such that f(a) = 0,
where a¢8. The subspace 8, is compact as a closed subspace of the Tycho-
noff cube P [—d(a,x), d(a, x)].

reS

Indeed,
S, = P[—d(a,x),d(a,x)]

xeS
since functionals are metric functions and from f(a) = 0, feS’, we obtain

—d(a,r) < f(r)< d(a,x), xe8.
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Next, if geS,, then g(a) = 0 and for every z, yeS8, aeR and ¢ >0
there exists an feS; such that

gle)—flx) <&y, lgy)—flPl <e,
lg(x+a)—flz+a)l <e,
glevy)—fleavuy)l<e, Ilgeny)—flzryl<e.

Hence for example
g(z+a)—g(@)—a| < |g(r o) —flo+ o)+ |f(x)—g(2) < 2,

whence g(x—+ a) = g(r)4-«a.
Similarly,

glxvwy) =gx)owgly) and gl@~y)=g(@ g,

and thus gesS,.

We shall show that a mapping x — ¥(x)|8; is an isomorphic
imbedding, xeS.

Indeed, if x, yeS and x # y, then there exists an fe§ such that

flo) = (P@)(f) = (YW = fy).
" Then f—f(a)eS, and

(P (@) (f—fa)) = f(x)—fla) # fly)—f(a) = (P(¥)(f—S(a).

Thus we obtain the isomorphism wy =¥, 8-> ¥({)|S, of § onto
Y(8) 8y = {¥Y(x)|Sa}ees Where ¥ (x) = ¥(x)|8,.

DerINITION 1. We put fllg for f, geS, if there exists ae R such that
f+a =g, where

(f+ a)(@) = f(z)4-«, xeS.

It is obvious that the relation || is an equivalence and we can consider
the canonical projection p: § — §/i.

It is obvious that for every ueS'/|| there exists exactly one fed§,
such that p(f) = «, whence we obtain & 1-1 correspondence p,: S; — §/|l,
where p, — p|S,, and a 1-1 correspondence wg,: S, — S;, where g, = p; 'Pa,
a, beS.

It is easy to see that w,, is a homeomorphism, as wq(f) = f—f(b)
= f—(¥(b)) (f) for feS,. Thus we may introduce in §'/|| a topology such
that p, is a homeomorphism for every aeS. This is the quotient topology
of the weak topology in §°; we shall call it the weak quotient topology.
The mapping (%, a) - p; ' (#)+ a is » homeomorphism between §/|x R
“and 8 (aef).
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For a homomorphism (dual homomorphism) F: § — 8, of a metric
distributive d-lattice 8§ into a metric distributive d-lattice §; let the
mappings F: 8; — 8 and F'/||: 8;/|| > §/|] be defined as follows:

(1) Ff=foF (Ff=—foF) for feS,,
(2) (F'[)op,(f) = poF(f) for fef;,

where p,: §; = 8;/| is a canonical projection.
It is obvious that the following theorem is true:

THEOREM 6.1. If F': § — 8, is an isomorphism or a dual isomorphism
of the metric distributive d-lattices S and S, (in particular if S, = 8° and
F(f) = f for feS), then the mapping F'[|| is a homeomorphism of the spaces
Si/l| and §'/|| in the weak quotient topologies of this spaces.

THEOREM 6.2. Let F': S — 8, be a homomorphism (dual homomorphism)
of a metric distributive d-lattice 8 into a metric distributive d-lattice S,.
Then F'||| is a continuous mapping of 8/l into S/l

Proof. First let us remark that the mapping F" is continuous.

Indeed, the counter-image of a set

{fe§: a < flw) < B},

where zeS, a, f¢R, under the mapping F', is a set
{geSy: a < goF(x) < p},

i.e. counter-images of the sets from the subbase of the weak topology of
S’ are open subsets of S8}, whence I" is continuous.

Hence poF': 8; - §'/| is also a continuous mapping. Thus from (2)
it follows that F /|| is continuous, since 8/|| is considered with quotient
topology. (The case of a dual homomorphism follows from Theorem 6.1.)

THEOREM 6.3. Let F: 8 > 8, be a (dual) homomorphism of a metric
distributive d-lattice S8 onto a d-lattice S,. Then F'[| is a homeomorphic
imbedding of 8./l into 8/

Proof. Let f, ge8,. If the relation f|jg does not hold, then the relation

foFlgoF does not hold either, since F is onto. Thus from (1) and (2) it
follows that

(F/I}(u) # (F'[)(v) for u s=v,u,veS/|.

THEOREM 6.4. Let F: § — 8§, be an isomorphic (a dual isomorphic)
imbedding of a metric distributive d-lattice 8 into a metric distributive
d-lattice S,. Then F'[|| is a continuous mapping of Si/|| onto S/||.

Proof. It is sufficient to prove that the mapping F: 8§ — 8§ is
onto., Thus Theorem 6.4 immediately follows from
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THEOREM 6.5. The d-lattice R has the following extemsion property:

if 8 is a d-sublattice of a metric distributive lattice 8, and f: S - R
is a functional, then there exists a functional g: 8, — R such that ¢g|S = f.

Proof. The set f~'(0) is a bunch in a d-lattice S,. Thus it is contained
in a maximal bunch Pe#(8,). A functional geS8; such that ¢g='(0) = P
is an extension of f. Theorems 6.5 and 6.4 are proved.

Let [/]|]] be a “mapping’’ defined on the category of metric distribu-
tive d-lattices with homomorphisms as the morphisms, into the category of
compact spaces, with continuous mappings as the morphisms, such that

(/i1 8 =&/ and [/I1: F —F]|,

where S is a metric distributive d-lattice and 7 is a homomorphism of
such d-lattices.

Next, let € be a “mapping”’ defined on the category of the compact
spaces into the category of metric distributive d-lattices such that

C: X - 0(X)
for a compact space, and such that for a continuous mapping ¢: X - X,
of X into another compact space X,, a homomorphism F;, = C(¢) of
a d-lattice C(X,) into C(X) is given by
(F'\f)(x) = fo ¢(x)
for any feC(X,), xeX.

Finally, let § be a metric functional d-lattice defined on a set X.
Then we shall denote by

(): X -8 and (/) X -8
the mappings given by

()(@) =2  where 2(f) = f(a)
and

(/IN(x) = p()
for any xe¢X and feS.

THEOREM 6.6. The “mappings’ ['/I|] and C are contravariant functors
such that for any compact spaces X, X, and any continuous mapping ¢: X - X,
and for § = C(X), 8, = C(X,), the mappings

C/i: X =8l and (i) Xy~ 8l
are homeomorphisms such that

(3) C/hioe = (Frfl)o C/),
" where ¥, = C(gp).
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Proof. IMirst we shall show that if S, §, and 8§, are metric distributive
d-lattices and F': 8§ - §, and F,;: 8§, > 8§, are homomorphisms, then

(FreFY [l = (F[l)=>(Fi/l).
Indeed, for any u = p,(x)e8;/|l, where z¢S,, we have
(F (Do (Fr/)(u) = (F[l)opo Fi(z) = poF oF(z)
= po(F,oF) (x) = (F,0F)[[(u).
Obviously if F is an identity homomorphism of 8§ onto itself, then
F’[|| is the identity homeomorphism of S/ onto itself. Hence [/||] is
a contravariant functor.

It is quite easy to see that C is a contravariant functor.
We shall prove equality (3). Let ze¢X. Then

goF\(f) = (F.f) (@) = fop(x) = (¢(@))(f)
for any feC(X,), i.e. #oF, = (p(x)), whence

(Fy o (/i) (x) = (Fy/l)op(x) = p,o F\(7)
= poa’oF, = po(p(@) = ([lhog(x).

Thus we need only prove that (/||) is a homeomorphism. We shall
show this for a more general case in Theorem 6.8.

LiMMA 6.7. Let S be a metric functional d-lattice defined on a set X.
Then the image of X under the mapping ('/||): X — 8/|| is a dense set in S'/|].

Proof. It is sufficient to show that for every non-empty open set
G c 8, such that if ge@, then g+ aeG for any aeR there exists an xeX
such that ' ¢@. We have

G2G, ={geS: ;< g(fiy <pifori=1,2,...,0} #0O

for some f;e8, a;, fieR, 1 =1,2,..., 0.
Let goe@y. Then g,(fi) = 0, for fi = fi— go(f;) where i =1, 2,..., n,
whence

90(};)1 fl) = o gf:) = 0.

n n
It means that the elements f~ = () fi and f© = J fi are linked.
i=1 i=1
Thus for every ¢ > 0 the set

A, ={zeX: f (x)+e = ft(x)}
is non-empty. Let

2¢ = min min(go(fi)—aia ﬂi—go(fi))

te=1,...,0



Paragraph 6 417

and let z¢A,. Then

filz)—e <filz) <filx)+e
and consequently

fi@)—go(f)— & < file)—go(fi) < fi(®)—go(f1) +-¢.

Hence, it follows from the definition of ¢ that

Ju@)—go(fL) + ai < fi(z) < fi(@)—go(fi)+ Bi

for i =1, 2,..., n. We put y = f,(x)—¢,(f,) e B. Then the last inequality
implies

a; < (x —y)(fi) < b
for 1 =1,2,...,n. Hence ' —ye@, and z «G. The leI'nma is proved.
DerinIrion 2. 8 is a perfect d-lattice defined on a topological space X,
if § is a d-sublattice of the d-lattice C(X), and 2'|jy" does not hold for any
different z, y¢ X, and § distinguishes points and closed sets of X in the
following sense: if ze X, 2¢ A = A c X, then there exists a finite sequence
fiy f29.-+y fneS such that

flz) ¢ f(4),
where f: X — R" is given by

F(@) = (f2(@), fol@)s «ery ful®)-

It is easy to see that for a metric functional d-lattice 8, the d-lattice
¥ (8) distinguishes points and closed sets of 8. Thus ¥(8)|8; is a perfect
d-lattice defined opn S,, for an arbitrary a<S. Hence every metric distrib-
utive d-lattice is isomorphic to a perfect d-lattice on a certain compact
space. Evidently every perfect d-lattice is metric.

TuroreM 6.8. Let X be a Tychonoff space and let S be a perfect d-lattice
defined on X. Then the mapping (/|): X — 8'/|| is a compactification of
space X. Every compactification of X can be obtained in this way. In partic-
ular, if 8 = C(X), then the mapping ('/|): X — S| is the Cech-Stone
p-compactification.

Proof. By Lemma 6.7, the image of X under the mapping ('/|):
X — 8'/|| is a dense subset of 8'/l|. We shall show that this mapping is
a homeomorphic imbedding of X in §/|.

Indeed, from the perfectness of d-lattice S it follows that for any
different elements z, z;¢X the elements p(z’), p(x))e8'/| are different.

Next, it follows from the definition of weak topology in § that the
mapping (): X — § is continuous, because the set {reX: a< 2'(f) < f}
is open in X for any feS and «, f ¢ R,-since it is equal to the counter-image
of the open segment (a, f) under the continuous real function f. Hence
the mapping (/||) = po(’) is also continuous.
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In order to prove that the mapping ('/|): X — §/|| is a homeomor-
phic imbedding, we must prove that if A = 4 = X and z¢X\ 4, then

(@) ¢ ([IN(4).

It follows from the perfectness of § that for such x and 4 there exist
real functions f,, f,, ..., foeS such that

fl@) ¢f(4)
for the mapping f = (fy, fay..-y fu): X — R". Then

¢ = inf max [fi(x)—fi(y)]

Yed 1=12,...,7

is a positive real number, whence

n

M {ueS: fi(x)—e < u(fi) < fi(x)+ e}

n

=1

is an open neighbourhood of # in §', which is disjoint with a set () (4).
Thus

z ¢ ()(4).
This means that (): X - § is a homeomorphic imbedding.
Let ae8 be an arbitrary fixed element. Then also a mapping

> —a(@) =a—(¥(a)(x)
of X into S, is a homeomorphic imbedding, since a mapping
p:u > u—(P(a))(u), ues,

is a homeomorphism of 8 onto itself. Since p,: 8; — 8/|| is a homeo-
morphism, we see that

(/) = pacgo(): X = §]

is & homeomorphie imbedding. Thus (/||): X — §'/| is a compactification
of X.

In particular, if X is a compact space, then ('/||): X — §8/| is a homeo-
morphism of X onto 8'/||. This completes the proof of the preceding
Theorem 6.6.

Now we shall show that any compactification (with respect to the
equivalents of compactifications) of a Tychonoff space X can be obtained
in this way.

Indeed, let a: X - aX be the compactification of a Tychonoff
space X and let S be a set of all the real functions feC(X), which has
the extension afeC(aX), where

(af)(a(2) = f(=)
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for zeX. Then 8 is a functional metric d-lattice defined on X and the
mapping

A: f—>af, feS,
is an isomorphism of the d-lattice § and S, = C(aX). Thus it is easy
to see that § is a perfect d-lattice. Hence ('/||): X — 8'/|| is a compactifi-
cation of X. We shall show that this compactification is equivalent to
the compactification a: X - aX.

As a matter of fact, it follows from Theorems 6.1 and 6.6 that the
mappings

Al il =8 and - (/I aX > 8|
are homeomorphisms and consequently
(Ao (/Ih: aX — 8|
is a homeomorphism. We need only prove that

(A/l)o (/i o al®) = (/i) (=)

for z<X. In order to prove this let us remark that

A ((a(w))') =z

since
A ((a@))(f) = (a@) (A (f)) = (a(@)) (af) = 2 (f)
for any feS. Hence

(A'[Il)o (/o a(@) = (A'/l)o py((a(@)) = po 4 ((a(z)))

=poa = (/)(=).

Finally, let 8 = C(X). Then 8§ is isomorphic to the d-lattice 8, = C (8X),
where the isomorphism B: 8§ — 8, is given by

B(f) = 6f.

Then the compactification ('/||): X — 8§’/ is equivalent to a f-com-
pactification. The theorem is proved.

THEOREM 6.9. Let 8 be the perfect d-lattice defined on a compact space
X, let §; = C(X,) be a functional d-lattice defined on a compact space X,
and let F: 8§ — 8, be a homomorphism (a dual homomorphism) of these

d-lattices. Then there exist a continuous mapping ¢: X, > X and a real
function beC(X,) such that

(4) Ff=fogep+b (resp.Ff=—fO¢p+12 for any feS.
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The mapping ¢ and the real function b are unique.

Furthermore

(i) ¢f 8, is a perfect d-lattice and F is an isomorphism (a dual iso-
morphism) of S and §,, then ¢ is a homeomorphism of X, and X ;

(ii) ¢f 8, i a perfect d-lattice and F is a homomorphism (a dual
homomorphism) of S onto 8,, then ¢ is a homeomorphic imbedding of X,
into X; -

(iii) ¢f F is an isomorphic (a dual isomorphic) imbedding of 8 into 8,,
then @ is a continuous mapping of X, onto X.

Proof. We put

(5) ¢ = (/" o Fllio (/i
and |
b= Ffy—foo g (resp. b = Ffy+fo0 ¢)

for an arbitrarily chosen f, 8. It follows from Theorems 6.2 and 6.8 that ¢
is a continuous mapping (the mapping (/|): X — §/|| is onto, since X
is a compact space). Hence f,o ¢ is a continuous real function and conse-
quently beC(X,).

Let us remark that

(/D™ e po F()IF (z), Xy,

and
g(@) = ([~ o F[llo(' [ (x)
= (/i o Flilo py(@) = ([l T o po F'(a),
whence
(@ (@)1 F ().
Thus

(" (@) (N — (¢ @) () = (F(@) (fo)— (9 ()] (o)
for any feS8. Since

(F (@) () — (¢ (@) (f) = (Ff) (@) —fog(x)

(respectively
(F (@) () —(¢(@) (f) = — (Ff)(@)—Fop(2),
we have
Ff—fop = Ffo—foop = b
(respectively

Ff+fop = Ffy+foop = b)
for any feS. This compl'etes the proof of equality (4).



Paragraph 6 51

In order to prove the uniqueness of ¢ and b let us assume that also
for a mapping ¢': X, > X (not necessarily continuous), and for a real
function »’ (not necessarily continuous) defined on X, the equality

(6) Ff =foq'+b  (resp. Ff = —fog' +b)
holds for any feS. Then, by (4) and (6),
(¢" @) il(g (@),

whence
¢' (@) = (I op (¢ @)) =/ op(lp@)) = ¢,

i.e.

Thus, by (4) and (6),
b’ =b.

Next, if /| is a homeomorphism or a homeomorphic embedding
and ('/|l), is a homeomorphism, or if ¥ /|| is a continuous mapping “onto”,
then it follows from (5) that ¢ has the same property as ¥ /{|. Hence from
Theorems 6.1, 6.3, 6.4 and 6.8 follow assertions (i), (ii) and (iii). The
theorem is proved.

COROLLARY. If under the assumption from Theorem 6.9 X is a subspace
of Xy, and
(7) F(Hlx=f
for every fe8, then the mapping ¢ from Theorem 6.9 is a continuous retraction
of X, onto X.

Proof. It immediately follows from (4) and (7) that «'fi(p(2))
for ze¢X. Hence ¢(x) = x for x¢X, as 8§ is a perfect d-lattice.

Remark 1. For the perfectness of a functional d-lattice S = C(X),
where X is a compact space, the following condition is sufficient:

Zly iff z=y, x,yeX.

ExaMmPLE. Let X = I?, where I = [0,1] < R, and let S be the set
of all functions feC(X) such that

f(—1,0) < f(0,0) <[f(1,0).

Then 8 is a perfect d-lattice on I?, but there exists no function feS,
which distinguishes a point (0, 0) and I* (boundary of I?), i.e. for which
f(0, 0)¢f(I%).
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Remark 2. If § is a metric distributive d-lattice and X < § is
a compact set such that

V. dq @ #b) > (u@) ~ ),

a,beS ueX
then

V. (wfv).

veS’ ueX

Indeed, for such a compact X < § the mapping F: § — C(X)
given by
(Fa)(u) = u(a) for wueX, ae8

is an isomorphic embedding of § into §; = C(X). Then the mapping
(F /o (/l): X > 8/|| is onto (see Lemma 6.7 and Theorem 6.4). But

(F'[i)o (/Di(u) = (F[l)op,(w) =po F(u) = p(uo F)

for ueX and

wo F(a) = (Fa)(u) = u(a) for wueX, aesl,
i.e.
woF =u
and

(F [ o (/ID1(u) = p(u).

§ 7. The main result of this section is the representation theorem
for arbitrary, not necessarily metric distributive d-lattices (see Theorem
7.5). It turns out that every such d-lattice is isomorphic to a certain
d-lattice of continuous real functions which may also assume the values
+ oo or — oo, and which are defined on a certain compact space. This
theorem enables us to distinguish a rather large abstract class of distrib-
utive d-lattices isomorphic to functional d-lattices (Theorem 7.6), and
also a class of distributive d-lattices which are not isomorphic to functional
d-lattices. More than that, it is even impossible to define any functional
on a d-lattice from the second class.

We shall consider the non-metric distributive d-lattices. Let
R = {— oo} v R u {00}
be a usual two-point compactification such that the mapping

¢: B - [—=/2, =[2]
defined by

—n/2 for = — oo,
p(x) = {aretgz for 2z2eR,

/2 for z = o0
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is a homeomorphism of R’ onto a closed segment [—nx/2, n/2]. We put
max(a, co) = max(oo, a) = oo,
min(a, —oo) = min(—oo0, a) = —oo,
max (¢, —oo) = max(—oo, a) = min(a, oo)
= min(oo, a) = «
for any aeR’, and
cot+a=a+oo = oo, —oo+ta =0a+(—o0) = —

for any aeR.

Let D(X), for a topological space X, denote the set of all continuous
mappings f: X — R’, such that f~'(R) is a dense subset of X. Then for
every f, f'eD(X) and ae¢R we can define the mappings f v f’, f ~ f’ and
f+a of X into R’ by )

(1) (f © ) (=) = max(f(z), f (),
(2) (f ~ f)(z) = min(f(2), f (),
(3) (f+a)(@) = f(#)+a

for any xeX. Since

(fo f)HR) = (f'({—oc} v R) ~ (f) ({—o0} v R)N(f(—o0) A
~ (f) (=),
(f~f)Y HR) = (f 1R v {oo}) A ()R w {co)N(f ' (o0) ~ (f) ' (e0)),
(f+a)""(R) = f(R),
the sets (f v f')"'(R), (f ~ )" "(R) and (f-+ «)~1(R) are the dense subsets

of X. Thus fuf, f~f, f+aeD(X) (since, evidently, this mappings
are continuous).

THEOREM 7.1. Let X be a non-empty topological space. Then the quadruple
(D(X), v, ~, +)} is a distributive d-lattice (v, ~ and + are given by (1),
(2) and (3)).

Proof. Evidently a triplet (D(X), v, ~) is a distributive lattice
and the axioms 1-5 from § 1 hold (axiom 4 holds because f~'(R) # O
for fe D(X), and axiom 5 holds because if f > g, f, ge D(X), then f(z) > g(x)
for a certain zef '(R) ~ g '(R)). We need only prove that axiom 6 holds.

Indeed, let f, g, he D(X). If

h=2f~(g+a)
for any aeR, then

h(z) > f(z) for every zef '(R) ~ g '(R) ~ h™'(R).
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Thus h = f as the set f~'(R) ~ g~ '(R) ~ h~'(R) is a dense subset
of X (an intersection of a finite number of open dense subsets is an open
dense subset). Hence

f=U {f~lg+a)
and similarly we can prove that
f=01fvgta).

The theorem is proved.

We shall show that every distributive d-lattice can be imbedded
in a certain d-lattice D(X) such that X is a compact space. But first
we shall introduce some auxiliary notions.

Let 8 be a distributive d-lattice, aeS a fixed element and S, = 8
the d-sublattice of all elements z¢S, for which d(w, a) << co. Then we
define a mapping u,: RxRE — 8 by

ug(d, p) = (a+ 1) v (v ~ (a+ ),
for every zeS. Since
(4) a+1i = u(d, u) € a+max(2, u),
we have
u (A, p)eS, for any ze8 and 4, ueR.

It is obvious that the equalities

(8) Uroy(Ay po) = ue(dy ) w uy(4, u),
(6) Uz y(Ay p) = uz (R, p) ~ uy(4, ),
(7 u.r+€(17 p) =ug(A— &, u—E)+ ¢

hold for every x, ye8 and 4, u, éeR.
We have also

(8) Wy, wy(Ay ) = Uz(4, )

for every real A’ < 4 and u < u’, and for any weS.
LEMMA 7.2. Let x¢8 and feS,. If

(9) A Ef(ueA, ) £
for the real mumbers A, u, then

(10) A< flus(, p) < p
and for any real numbers A', u' such that
() - X< w2y w) < @
we have

f(“w(ll, ,“')) = f(“z(}*y .“))°
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Proof. It follows from (4) that

A < flus(h, p) < max(i, p).

Thus from (9) we obtain (10).

Now, let (11) hold for the real numbers A’, ¢’ (and we assume that
(9), and consequently (10), hold). First we shall consider the case of

V<2< flus(dy ) <w<p
Then, using (8), we have
Flua(a, 1)) = Fttugefd, w)
= max (l’ min (f(ua:(lla P"))v F‘)) ,
= f(uz(lla u'))

(the last equality follows from (9)).
Next, in the general case of (11), we find that for

A" =min (A, A") and 4" = max (u, u’)
we have

f(u-t(}'y .“)) = f(uz(l”’ .u“))
= max (;*" min (f(uz(luy !‘"))’ .“’))

= [ty u(X s 1)) = f (s, ).
The lemma is proved.
LEMMA 7.3. Let xe8S and feS,. If

(2, W)y =2 or flu(a, w) = p
for any A, ueR, then

(12) fluz(A,p)) =2 for any A<p (A, ueR)
or

(13) fluz(d, w)) =p  for any A <p (4, peR).
Proof. Let ' <A< u < u’. Then, as in Lemma 7.2, we have
fluz(a, p)) = max (}., min (f(u,,.(l’, #)s ,u))
Thus if f(uz(A', p')) = ', then f(u. (4, p)) = 2 and if f(uz (4, p')) = ',

then fluz(4, u)) = u.
Now let us assume that

f(uz(g’ ’7)) =§ or f(“x(fa ’7)) = ’7
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for any &, neR. Then for any real numbers A, 4, 4', u’ such that 1< pu,
A < p' we have f(uz(4, p)) = 4 iff

f(ux(min(l, A'), max(u, ,u’))) = min(4, '),

and the last equality holds iff f(u.(2’, ')} = A’ (by the alternative assump-
tion of the lemma), i.e. f(u,(4, u)) = 4 iff flu (1, u')) = 4.

Analogously, f(u:(2, u)) = p iff f(u,(2',u’)) = u’. The lemma is
proved.

LEMMA 7.4. Let S be a distributive metric d-lattice, and let U < S,
be an open neighbourhood of a functional feS, for an element aeS. Then
there exist elemenis b, ceS such that

(14) f(b)y>f(e) and g(b) < g(c)

for each geS,\ U.
Proof. For any geS,\ U there exist y, zeS such that

9(y)—g(2) # fly)—f(2).
For such y, 2 we have
gy)—g) <fly)—f(z) or g(z)—g(y) <fl2)—f(y).

Consequently, for every geS,\ U there exist y, z¢ 8 and a neighbour-
hood V of g such that

sup (¢'(y)—¢'(2) < f(9)—1).

Since 8, is compact, there exists a finite open cover {V,, V,, ..., Vy,}

of 8;\ U and sequences ¥,, ¥z ...y Yny 21, Zay..-5 2n€S such that
B: = (f(y)—f(2)) — sup(g (y) — 9 (20)) > 0
gel
for ¢ =1, 2, ..., n.
Now let

by = Q (yi—f(y:)) and ¢ = z‘L=J1 (2:—f(2)).
Then
sup (g(bo)—g(c))

acs;l\U

< sup (g(b))—g(c)) = max sup(g(by)—g(c)

n 1‘=|l2v“oin UGVA,'
g¢ U V3
1=1

< max _sup ((g(y)—F(g:)—(9(z0) — f(2)))

i= l,2,....ﬂ aGVi

= max [—(fy)—f()+sup(g(y)—g(z)| = max (—B) <0.

i:l,z,...,ﬂ
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Hence
flbo) = f(¢) = 0> sup (g(b)—g(0)).
a‘S;\Lf
Thus for
b=Db,—} sup (g(b)—g(o))
geS \U
we have

f(b) >fte) and  g(b) <g(c)
for every geS,\ U. The lemma is proved.

THEOREM 7.5. If 8 is a distributive d-lattice and S, < S is a maximal
wmetric d-sublattice of S, then S can be isomorphically imbedded in D(X),
where X = (8,). (see § 6) for any arbitrarily fived element aef,.

Proof. We put

fluz(i, u)) for A, u such that (9) holds,
ix(f) ={ — o0 if (12) holds,
oo if (13) holds
for any ze8 and feX = (S;),-

First we shall show that i;eD(X) for xeS.

Indeed, let a, fcR, a< f, and (a, f) = R be an open segment. Then
it follows from Lemma 7.2 that

iz ((ay B)) = {feX: a < flus(a, B)) < B}.

Hence iz '((a, #)) is an open subset of X = (8),.

Next from Lemmas 7.2 and 7.3 we obtain

iz ([—oc, a)) = {feX: fluz(£, a)) < a for some &eR)
and
iz '((a, 0o]) = {feX: f(uz(a, &) > a for some ¢eR}

for any aeR. Hence the sets iz '([— oo, a)) and i;'((a, oo]) are also open.
Thus we have proved that i,: X — R is a continuous mapping. We need
only prove that i;'(R) is a dense subset of X.

Let V be a non-empty open subset of X. Then

U= VNiz'(—o0) or U = V\i;'(o0)

is also a non-empty open subset of X. We can assume that U # @ (the
case of VN\i;'(oco) #@ is analogous). Let feU. Then it follows from
Lemma 7.4 that there exist the elements b, ceS, such that (14) holds
for each ge(Sy).\ U = X\ U. Since

¢ S(cv(@ta)~(ct+d(d,c))eS,
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for any «eR, for each ge X\ U we have
(15) g(lc v @+a)~(ctdd,c)) =g(k) for any acR.

Now let ge X and ¢,(g) = oo. Then condition (15) holds for such a g.
Indeed, for

A< —d(a,c—a) and pu>dla,ct+db,c)—a), ucR,
we obtain
((c—a) v a) ~ (e+d(b, 0)—a) = ((c—a) v us(d, p)) ~ (e +d(b, ©)—a)
and
p=dla,c+db,c)—a >glc+db,c)—a
(as g(a) = 0), whence
gl (#+w) ~ (c+d(, o))
— g(((c——a) v ) ~(e+d(b, c)—a)) +a
= g(((c—a) v we(d, ) ~ (¢+d(b, 0)—a)) +a
= min(max({g(c)— a, ), g(¢)+d(b, ¢)—a) +a
= g(c)+d(b, c) = g(b).
It follows from axiom 1 from § 1 that

¢~ (le © (24 @) ~ (c+db, e),

and from (14) we have b ¢ ¢. Hence there exists an a,eR such that
b (¢v (@4 ap) ~ (¢c+d(b, ¢)).
Consequently, there exists a ge U such that
g((c v @+ag) ~ (c+a(b, e))) < g(b)

(since for ge X\ U we have (15)). Then — oco<C i;(g) < oo for such geU.
Thus we have proved that i;'(R) is a dense subset of X.
We shall show that a mapping i¢: § — D(X) given by

i(x) =1, X8,

is an isomorphic imbedding of a d-lattice S into D(X).
Indeed, let z, ye8, feiz'(R) ~i;'(R), £<R and

—oo < A < min(ig(f), 4y (f), tooy () teap(F)s teie(f), 22(f) + &)
o0 > u > ma’x(":x(f); Gy () Ty (f) s t2~u (), tzre(f), i (f) + E)-
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Then, from equality (5), Lemma 7.2 and the definition of i,, zeX,
we have

booy(f) = fltooy (A, p))

= f(ua(y 1) < wy (4, ) '
= max (f(uc(4, u), fluy (4, w))
— max(i,(f), iy(f).
Since i, is a continuous mapping for any zeS, we have
(16) ivoy(f) = max(iz(f), 4y(f)) for any feX.
Analogously we can prove
(17) irng(f) = min(iz(f), 4,(f)), for any feX.

Next, from equality (7), Lemma 7.2 and the definition of i,, ze¢ X,
we obtain

izps(f) = fluce(d, p)
= fluc(A—&, u— &)+ &
= i, (f)+ &
for feiz'(R) = iz.:(R). Thus

(18) tree(f) = () + & for any feX.

From (15), (16) and (17) we infer that ¢: X — D(X) is an isomorphic
imbedding. Thus the proof of the theorem is complete.

TUEOREM 7.6. If a distributive d-lattice S contains at most a countable
number of different maximal metric d-sublattices, then S is isomorphic to
a certain functional d-lattice of continuous functions defined on an absolute
Gy-space Y ().

Proof. It is easy to see that if x, yeS are comparable, then, under
the notions for the previous theorem, i;'(R) = i, '(R). Thus

Y =NiZ'Y(R)
zeS
is a dense Gj-subset of (S;), (from Baire’s theorem). The mapping
x —> 1Y, xe8,is an isomorphic imbedding of § into a functional d-lattice
S, = {ix| Y}ses- The theorem is proved.
On the other hand, we shall prove

THEOREM 7.7. If a compact space X satisfies the first axiom of count-
ability and if X is dense in itself, then there exists no functional defined

(%) A topological space Y is an absolute G4 if ¥ can be homeomorphically imbedded
"in a compact space as a dense Gy-subset.
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on the d-lattice D(X). Consequently D(X) is not isomorphic to any functional
d-lattice.

Proof. Let u: C(X) - R be a functional defined on the d-lattice
C(X) c D(X). We must show that there exists no functional v: D(X) -~ R
such that v/ D(X) = u. One can assume «(0) = 0.

We know that there exists a point xeX such that v = & (i.e. u(f)
= f(z) for feC(X)). Let a real function feC(X) be such that f(x) =0
and f(y) >0 for ye X\{x}. We put ¢g(y) = 1/f(y) for sueh points y, and
g(z) = oco. Then the function g belongs to D(X). Let c,eC(X), aeR,
be a constant function given by c.,(r) = a for zeX, and let g, = ¢, ~ g¢.
Then g, < ¢ and u(g,) = g.(x) = a. Hence if v: D(X) — R is a functional
such that v»|C(X) = u, then v(g) > a for all aeR. But this is impossible.

Thus there exists no functional defined on D(X). The theorem is proved.

Let us notice that the space X appearing in Theorem 7.5 depends
on the choice of a maximal metric d-sublattice S, of the d-lattice S.

For example, let § = 8, o §,, where S, = C(R) and 8§, is a set of
all continuous real-valued functions f defined on R for which there exist

lim (f(x)—=2? and lim (f(z)—?).
T=—00 =00
Then 8 is a d-lattice and S, and S, are its maximal metric d-sublattices.

But S§,/|| is homeomorphic to A(R), whereas §,/|| is homeomorphic to
the closed segment [0, 1].

§ 8. In this section we deal with the direct sum of d-lattices (and
related notions characteristic for d-lattices). We give a condition which
is an isometric invariant and which is necessary in order that a d-lattice
decompose into a direct sum. A d-lattice which does not satisfy this con-
dition, that is a d-lattice which satisfies the converse condition, is
said to be metrically simple. For distributive metric d-lattices the notion
of metric simplicity coincides with the notion of indecomposability into
a direct sum. Moreover, every isometry of indecomposable distributive
d-lattices is an isomorphism (see Theorem 8.5).

In this section, once again, we consider connections between the
algebraic and the metric structures of d-lattices.

DEFINITION 1. An equivalence relation ~ defined in a d-lattice §
is a congruence if the following conditions are satisfied:

(i)if e ~2" and y ~y’, then z oy ~z' vy, cAny~z'~y
and z+a ~ 2 +a for every z, y, ', ¥’ eS8 and aeR;
(i) 8/~ is a d-lattice with the operations v, ~, 4, defined as
follows:
Toj=(@oy~, EAj=(@~yY~, Fta=(ta)
for z, ye8S and aeR.
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In this paragraph 7 and (z)~ denote the equivalence class of the element
xe8 for congruence ~.

DEFINITION 2. The direct sum S @S of the d-lattice §' and 8 is
a d-lattice (8'x 8", <, +), where = and 4 are defined as

(m” ml’ g (y” yll)
iff
 cy and 2z’ cy’, (¢,2)V+a=(z'+a,z’"+a)
for ', y' eS8, &', ¥y eS8, acR.
It is easy to see that 8 @S’ is a well defined d-lattice and that

(@, 2") v (y,y") =@ wy,z" vy,

&)~ (YL Y ) =@ Ay, ~ YY)
PrOPERTY 1. The metric in a direct sum 8 D8 is given by
d((=', "), (y',y"") = max(d(«', y'), d(=", y")).
Hence the d-lattice 8' @S is metric iff the d-lattices 8’ and 8’ are
metric.

PROPERTY 2. The d-lattice 8'@8'" is distributive (modular) iff the
d-lattices 8" and S'' are distributive (modular).

PROPERTY 3. If ~ and ~ are congruences in a d-lattice S such that
from x ~y and © ~ y follows © = y, then a function f: 8§ - 8/ ~PS|~

defined by f(z) = (@, r) is a monomorphism (isomorphic imbedding). Thus
in this case

’

(x

d(x,y) = max(d(&,¥), d@,¥)).

DEFINITION 2. A d-lattice S is said to be decomposable into a direct
sum of the d-lattiges 8’ and 8" if § is isomorphic with §'@S8”. The
isomorphism f: § - §'@ 8" is called a direct decomposition of S onto the
direct sum of S and 8.

DerINITION 3. We say that a d-lattice 8 = 8'@S"" is a right (left)
direct half-sum if 8 # @ and for every (z',x')eS and (y',y" )eS' @8”
fromy c 2’ andy”’ 2 2" (y' 2 2’ and ¥y’ < =z'’) it follows that (y', y"')eS.

DEFINITION 4. We say that d-lattice S is decomposable in a right
(left) direct half-sum of the d-lattices 8° and §'' if there exists a mono-
morphism f: 8§ — 8 @8" such that f(8) is a right (left) direct half-sum
of the d-lattice 8" and 8. Such a monomorphism f is called a right (left)
direct decomposition of S.

PROPERTY 4. If a d-lattice 8 = 8’ @8 is a right and left direct half-
sum of the d-lattices S and 8, then 8 = S8’ ®S". If f: § > 8’ DS s
a right and left direct decomposition of 8, then f is a direct decomposition of S.
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Remark 1. It is possible that there exist right and left direct decom-
positions f and g of a d-lattice 8 in the right and left sums of d-lattices &’
and 8'’, and that there is no decomposition of the § in the sum of 8" and S"'.
But if f = g, then, by Property 4, function f is a direct decomposition.

ExampLE 1. Let 8, and S be subsets of d-lattices R* and R® (see § 1,
Example 4)such that

(ayy agy) €8y i ey <a
and
(ary ayy i)eS i a3 < ay < ag.

Then 8§, and S are d-sublattices and a function
f: 8 > R@S, given by f(a;, az, ag) = (ay, (aq, ay))
is a right direct decomposition and a function
g: 8 > R®DS, given by g(a;, az, a3) = (a3, (a1, a,))

is a direct left decomposition of S. But there is no direct decomposition
of § in the direct sum of any d-lattices 8° and 8", and especially of the
d-lattices B and S,.

PROPERTY 5. If f: 8§ — 8'@8", where f(z) = (f (z), ' (»)) is a right
(left) decomposition of S in the right (left) direct half-sum of the d-lattices S’
and S, then the function

g: 8 > 8'® given by g(x) = (' (2),f (2))

is the left (right) decomposition of S in the left (right) direct half-sum of S’
and 8.

DErINITION 5. We say that the elements a, b of a d-lattice S are in
a relation I', shortly al' b, if alb and for every a > 0 there exists a ceS
such that ale, ble, d(a, ¢) = d(a, b)+d(b, ¢) and d(b, ¢ = a. If al'd and
bI'a, then we shall write al b (for I see Definition 1 from § 4).

LEMMA 8.1. If a d-lattice S is decomposable in a right direct half-sum
of any d-lattices 8" and 8", then there exist in S elements a, b such that al'b.
If 8 is decomposable in a direct sum of d-lattices 8" and S'', then there exist
elements a, beS such that al™b.

Proof. Let f: § > 8 ®8" be a right direct decomposition. We put
f@) = (f (@), f (@), ze8, f(x)eS, f'(x)eS8”. Let aeS be an arbitrary
but fixed element and let a' = f'(a), a’’ = f'(a). For every a > 0 there
exists an element a,¢S such that

fa)=a—a and f'(a) =a"+a

(especially a, = a). If in addition f is a direct decomposition, then a,
exists for every aeR.
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If a<<pB <y, then

d(a., ag)+ d(ag, a,) = d(a,, a,)
since
d(a., ag) = d(f(a.), f(ap)
=d((a'—a,a"+a),(a’—B,a"+ ) = f—a
and analogously
d(az,a,) =y—f and d(a.,a)=y—a
Moreover, a,la; for a # f§ since
(a'—a,a”"+a)I{(a"—fB,a"+8) for a #§p.
Thus al'a, and it is easy to see that if f is a direct decomposition,

then al a,. The lemma is proved.

THEOREM 8.2. A metric distributive d-lattice S is decomposable in the
right direct half-sum (resp. in the direct sum) of any d-lattices S’ and S
iff there exist elements a, beS such that al'b (resp. al’b).

Proof. The part “only if” follows from Lemma 8.1. We shall prove
the remaining part of the theorem. Let § be a metric distributive d-lattice,
a, beS and al'b. Then there exists an element b, sueh that alb,, bIb,,
d(a, b,) = d(a, b)+d(b, b,) and d(b, b,) = a for every a > 0.

We introduce two binary relations v and ~ :

ey it y(wob =y uob),

a0 £=a

gy M i V (2~b: =y~ by).

ax0 i>a

It is easy to see that - and ~ are equivalence relations. Moreover,
these relations are congruences. Indeed, let # -~ ¥ and % -~ ». Then there
exists an « > 0 such that for every £ > a we have

roub=yob and wuob =0vob.
Hence
(zvwu)ub = (y vo) o b
and by the distributivity of S

(U)o b = (y V) o b
Thus

rourYyourv and AUy~

Further, we can assume that S is a functional d-lattice of functions
‘on a certain set 7. Then for z¢8 and teT we find that z(¢) is a real number.
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Let
A = {teT: b(t)+d(a, b) = a(t)},

(1)
= {teT: a(t)+d(a, b) = b(1)].

Then T — AoB, A~B=0, A #0, B0 and

b(t)— & for ted,
b:(t) =
b(t) +& for teB.

Thus x v y (resp. £ ~ y) means that x(f) = y(t) for teA (resp. teB).
Thus if # » y, then 2+ ~ y+ . Furthermore, 8/ is isomorphic with
a functional d-lattice S|4 = {f|A},s. Thus < is a congruence.

Similarly we can prove that 8/ ~ is isomorphic with 8|B. Thus ~ is
a congruence.

It is easy to see that if x ~ y and z ~ y, then =1y, x yeS. Hence
amap f: § > 8/~ @S/~ given by f(z) = (m a:) is an isomorphic im-
bedding. We shall show that f is a right direct decomposntlon
Indeed, let z,y, zeS, z 2 gi/ z 2. We must show that (v, z) cf(8).
Let a —ma.x(d b,x),d(b,y),d(b,z). T

~z and b,2T0Yuz;

8l
D)
0

z
b, ©

whence

~

fly o b =, b, flywbyna)=(y,),
fe by =0,2), f(Wob)n~a)o(zn b)) =(,2).

Thus (y, )ef(8S).
If in addition bI'a, then there exists an element a,¢S such that
bla,, ala,, d(b, a,) = d(b, a)+d(a, «,) and d(a, a;) = a for a > 0. Then
a(t)—a for teB,
a(t)y+a for ted

and similarly we can prove that f is a left decomposition of S into a left
direct half-sum of 8/ v and S/, since we have

syt @ V(@na=y9na),
a>0 é>a

zny iff o V(zova=y v ay.

a>0 £>a

Thus, if alI”b, then f is a direect decomposition of 8.
It follows from the proof of Theorem 8.2 that the maps # — z|4 and

— z|B are isomorphisms S/v — 8!4 and 8/~ — S|B, where S{A
{z|A}z.s and S|B = {z|B},;.s. Thus we obtain the following

e
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CorOLLARY 1. If f: 8 -~ 8'@8", f(x) = (f'(»), f'(®)), is a right or
left decomposition of S in a right or left direct sum of S’ and 8, and S is
a functional metric d-lattice of the functions on a certain set T, then there
exists a unique pair of subsets A, B c T, A B =T, A~B=0,A #0,
B +# O, such that there exist isomorphisms

i':8 >8/A and i':8 -8B
which satisfy
i'ocf'(z) ==2j4, {"of'(z)==2z|B
for ze8. If in addition T is a topological space and the functions from S

are continuous, then, as follows from formulas (1), A and B are closed-open
sets.

THEOREM 8.3. If a map f: 8 — 8 is an isomelry of the metric d-lattices S
and 8, and f(a+ &) = f(a)+ & (resp. f(a+ &) = f(a)— &) for some ael

and & # 0, then f i3 an isomorphism (resp. a dual isomorphism).
Proof. First, under the conditions of the theorem we shall show

that

(2) fla+a) =f(a)+a for every aeR.

We shall consider four cases (i)-(iv).
(i) £ >0 and a > 0.

The set S,(f(a), f(a+ a)) contains exactly one element, hence f(a-+ a)
= f(a)—a, or f(a+ a)If(a), or f(a+a) = f(a)+a.

In the first two cases we have

& (f(a), flo+a)) = d(f(a), f(a+a)) = a

and
d~(f(a+£), f(a+a)) = d™(f(a)+ £, f(a+a) = a+-¢.
But
d(f(a+ &), fla+a)) = la—§ < a+&.

This contradiction shows that if £ >0 and a > 0, then
fla+a) = f(a)+a.
(i) £>0 and a<< &,
If we put ay = a+¢&, ¢g = £—a >0 and if f,: 8° - 8'° is given by
fo(®) = f(z) for ze8 (see § 1), then fy(a,+° &) = fo(ao)+° £.
Thus from (i) we obtain fy(a,+° ay) = fo(as)+° ao; this means that
f(a+a) = fla)+a
(88 ay+°ap = (6+£&)—(£—a) =a+a and, fo(ag)+°a, = f(a+£)—a,
=fla)+ {—({—a) = f(a)+a).

Dlssertationes Mathematicae LXII 5
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(iil) £§< 0 and a > &.
This case is simply dual to (ii).
(iv) €< 0 and a< 0.

This case is simply dual to (i). Thus formula (2) holds.
Now we shall prove that

(3) a cbiff f(a) = f(b), and a=20b iff f(a) 2f(b) for every beS.

Indeed, a < b iff d(a, b) > d{a+ d(a, b), b). By (2) the last inequality
is equivalent to

d(f(a), (b)) = d(f(a)+ d(f(a), f(B)), f(B)),

which is equivalent to f(a) = f(b).

The proof of the second part of (3) is similar.

In order to prove (3) we used only (2). Thus if f(¢+a) = f(¢)+«
for every ceS and aeR, then our theorem holds. But this equality holds
for ¢ = a+ B, feR. Hence (3) holds if we substitute a+ g for a. Now let
ceS be arbitrary. Then

ccatd(a,e) and acctd(a,c)+1,

whence

fle)  fla)+d(a,¢) and f(a) < fle+d(a,c)+1).

Then f(c+d(a, ¢)+1) = f(¢c)—d(a, ¢)—1, or f(c+d(a,c)+1)If(c),
or fle+d(a, ¢)+1) = f(e)+d(a, ¢)+1. :
In the first two cases we have

a= (f(¢), fle+d(a, e)+1)) = d(a, ) +1,
whence
fle) € fle+d(a, e)+1)+d(a, ¢),

whence :
fla)+d(a,c) ¢ fle+d(a, ¢)+1)+d(a,c)
in contradiction to f(a) = flc+d(a, ¢)+1). Thus fle+¢&') =f(e)+ &
for ¢ =d(a,c)+1 #0.

Now, the proof of the equality f(c+ a) = f(¢)+ a, for every aeR,
is ‘analogous to the proof of (1). The theorem is proved.

LeEMMA 8.4. If amap f: 8 — 8,18 an isometry, butl neither an isomorphism
nor a dual isomorphism, then in the lattices S and S, there are pairs of
elements which are in the relation 1.

Proof. Let aeS. Then by Theorem 8.3 '
fla+a) # fla+B)+(a—f)
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and L . _
fla+a) # fla+ )+ (B—a)

for every a # f. Hence f(a+ a)If(a+f), a, peR.
Moreover, for every a < < » we have

d(f(a+a), fla+B) +d(f(a+ ), flaty)) = d{f(a+a), flaty).

Thus f(a)'f(a+1).

The mapping ' is also an isometry and not an isomorphism, whence
fHay) I"f~'(a,+1) for a,¢8,. The lemma is proved.

COROLLARY 2. If a function f: § — 8, is an isometry of the melric
distributive d-lattices S and 8,, and if 8 or 8, is not decomposable in a dzrect
sum, then f is an isomorphism or a dual isomorphism.

1

Proof. If under the conditions of the corollary f is not an isomor-
phism or a dual isomorphism; then- by Lemma 8.4 there are pairs of
elements from 8§ and 8, which are in the relation I". Hence the assumption
that § or 8, are not decomposable in a direct sum contradicts Theorem
8.2. Thus our corollary is proved.

From Lemma 8.4 we can obtain a generaﬁzation of the above assertion
for non-distributive d- lattlces First we shall introduce the following
definition: - : S

DEFINITION 6. A d-lattice S is called metrically simple if al”b does

not hold for any a,beS and 8§ is called metrically be-simple if al'b does
not hold for any a, beS.

THrOREM B8.B. If a function f: § — 8, i8¢ an zsometry of the metric
d-lattices 8 and Sy, and S or 8, i8 metrically simple, then f is an isomorphism
or a dual isomorphism.

Remark 2. Theorem 8.5 shows that the properties of metric simplicity
and metric be-simplicity are invariant under isometries.

~ Remark 3. Theorem 8.2 shows that a metric distributive d-lattice 8
is metrically simple (be-simple) iff it is not decomposable in a direct sum
(half-sum). In general, this equivalence does not hold — the d-lattices
from Examples 6 and 7 from § 1 are not decomposable in a dlrect half-sum
and they are not metrically simple.

Now we shall give examples of some classes of metrically be-sxmple
d-lattices.

Let S be a d-lattice. We define a function v: @ — R (where Q = S§x 8
is a relation defined in § 4, Definition 1),

v(a,b) = sup[aeR: a ~nb+a < a v b]

for a,beS, aQb. S
' If aIb, then a@Qb and »(a, b) = d(a, b). In general, »(a, b) < d(a, b).
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ExaMPLE 2. The class of the d-lattices § such that

sup (e, b) < oo
aQb,a,beS

is a subclass of the class of metrically be-simple d-lattices.

ExampLE 3. We say that a d-lattice S is connected if a@b implies
an~bQa b for a,bel, ie. if

sup v(a, b) = 0.
a,beS
One can prove that if S is a metric distributive d-lattice, then S is
connected iff the compact space §'/| is topologically connected.
ExAMPLE 4. Let § be a metric d-lattice and let p: S — S/|| (see the
definition from § 6) be a canonical mapping. We put
d(u,v) = inf d(a,bd) for wu,vel/|.

acu,bev

Then
d(p(a), p(b)) = ingd(a, b+ B)

and one can prove that there exists a f such that d(p(a), p(b)) = p(a, b+ B)
for a, beS. Thus for a, b, ceS there exist § and y such that

d{p(a), p(b)) = d(a, b+ B)
and

d(p(b), p(c)) = d(b+ B, c+y),
whence ~

d(p(a), p(b))+ d(p(d), p(c)) > d(a, c+y) > d(p(a), p(c)).

It is easy to verify the first two axioms of the metric. Thus (8/||, d)
is & metric space. We say that a metric d-lattice S is bounded if §/|| is
bounded. We shall prove that every bounded d-lattice is metrically
be-simple.

Indeed, let 8 be a bounded d-lattice. Then

d(a,b) = d(p(a), p(b))

d (a,b) =d"(a,b), a,beS.

We shall show that aIb implies d(a, b) = d(p(a), p(b)). Otherwise
we could assume that d*(a,b)—d (a,b) >0, i.e. that d(a, b) = d*(a, d)
= d” (a,b)+ ¢ for some ¢ > 0. Then

b2a—d (a,b) =a—d(a,b)+te
and
ea2a—d (a,b) =a—d(a,b)+e¢,
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whence
a~boa—d(a,b)+¢ and aca~bid(a,db)—e.

But the assumption alb implies a ~ b+ d(a, b) = a v b, thus a s av
v b—c¢and from Lemma 1.3, we obtain @ < b. Thena =a ~b,b =a u b
and a||b in confradiction to aIb. Thus if aIb, then

d(a, b) = d(p(a), p(b)) < diam §/||.

Let X be a bounded metric space. Then the set Met X of all real-
valued metric functions on X is a concrete example of a bounded func-
tional d-lattice.

“Met” is a contravariant functor from the category of bounded metric
spaces, with metric mappings as morphisms, into the category of d-lattices.
This functor can be extended preserving its important properties to
a functor from the entire category of metric spaces. Such an extension
can be achieved in several ways. The functor ‘“Met” has a number of
fundamental properties of the functor C (see § 6). Functor “Met” was
considered in [12].

THEOREM 8.6. If f: 8§ — 8'@8" is a direct (left direct, right direct)
decomposition of a d-lattice, and 8, is a maximal metric d-sublattice of 8§,
then the map f|Sq: 8y — f'(8,) ®f ' (8,), where f(x) = (f' (@), [ (%)) for ze8,
18 a direct (left direct, right direct) decomposition of 8S,.

Proof. Let f: § - 8’'® 8" be a right decomposition of §. Then f|8,
is a monomorphism. Let ¥’ < f'(x) and f’(2) < y” for an arbitrarily
chosen ze8, ¥ f' (S,), y”ef"(So).! Then there exists an aeS such that
¥ =f(a), ¥ =f"(a). Let us put

b= ([e—dly,f @) v a) ~ [a+dly", [ @)

Then beS, and f'(b) =vy’, f'(b) =y"".

The proof for a left decomposition is analogous.

The remaining part of the theorem immediately follows from Prop-
erty 4.

ExAMPLE 5. Let S be a set of all real continuous functions f: {—1} v
v [0, oo)—>R such that

f(—1) # f(0) = lim f(z) = oo.

Tz 00

Then C({—1} v [0, oo)) ~ § is a maximal metric d-sublattice of S
and it is not decomposable even in a direct half-sum. On the other hand,
the maximal metrical d-sublattice which contains the real funetion
"f(z) = x* is decomposable in a direct sum.
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§ 9. The results of this section are a continuation of the results-of
§ 6 and § 8. First we prove that every isometry of distributive metric
d-lattices which is not an isomorphism is associated with a decomposition
into a direct sum. Next, we prove three theorems: 9.4, 9.5 and 9.7.
Theorem 9.4 says that any isometry of perfect d-lattices defined on
compact spaces induces a homeomorphism of those spaces. It is a generali-
zation of the classical Banach-Stone Theorem (see [5]).

Theorem 9.5 says that an isometric mapping of a perfect d-lattice
onto a d-sublattice of a functional d-lattice (both lattices being defined
on compact spaces X, X, respectlvely) induces & continuous map of X,
onto X.

Finally, Theorem 9.7, the most essential one here, says that even
if no additional assumptions are made on an isometric embedding of
a perfect d-lattice in a functional d-lattice, the embedding will induce
a continuous map of a certain closed subset of the space X,; onto the
space X. It is more general than the corresponding theorems contained
in [2], [6], [7] (even if we restrict our theorem to the case of d-lattices
C(X), C(X,) because we assume nothing on the isometric embedding,
no linearity condition. The isometric image of C(X) in C(X,) need not
even contain a triple of algebraically collinear elements in C(X,), i.e.
elements f, g, heIm C(X) such that h = (1—1)f+1g for some teR).

Incidentally, we prove (see Theorem 9.6 and the corollary to that
theorem) that for any (not necessarily linear) isometric embedding of
one space of continuous real functions in another one there exists a linear
(metric) mapping of this other space into a third space such that a compo-
sition of these mappings is an affine isometric embedding of the first
space into the third space. Thus the following questions are natural (the
first was asked by J. Lindenstrauss during a talk I had with him):

Is it true that for an isometric mapping of one Banach space into
another there exists a linear mapping of this other. space into. a third
Banach space such that the composition of. these mappings is an affine
isometric embedding ? Does there exist such a metric linear mapping
of the second Banach space into a third space? (°).

THEOREM 9.1. Let 8 and 8, be metric d-lattices, let S, be a metrwally
simple d-lattice. Let ¢: S, — 8, be a homomorphism (or .a dual homomorphism)
and let f: § —> 8, be an isometry. Then gof: 8§ — 8, i8 a homomorphism
or a dual homomorphism. '

First we shall prove the following lemma:

(®) The latter question, and consequently also the former one, has recentlj-'
been affirmatively solved by Figiel [6], and later alse by the author of this paper
(see [11]).
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LEMMA 9.2. Let S be a d-lattice. If alb, then
(1) d”(a,d) = d"(a, b) = d(a, b)
and if, in addition, the sets 8,(a, ¢) and 8,(b, ¢) are one-element sets, then

alc and blc for any different a, b, ceS.

Proof. Let alb. Then a ¢ b and b ¢ a. Thus from Lemma 1.3 it
follows that

af(a—e)wbdb and bEfavu(b—e
for any ¢ > 0. Hence
afavb—e and bEaoub—e, £>0,
and consequently, as a ~ b =a v b—d(a, b), we have

anbdPa—d(a,b)te
and

an~bPb—da,b)+e

Thus equality (1) holds.

Next if, in addition, @ # ¢ # b and for example all¢, then the relation
bllc does not hold, since alb, the relation bl¢ does not hold either, since
d (b,o)< dt(b,c)ifc=a+d(a,c),and d™ (b, ¢) >d" (b, ¢)if ¢ = a—d(a, ¢).
Hence 8, (b, ¢) is not a one-element set in contradiction to our assumptions.
Hence alc and, similarly, bIe. The lemma is proved.

Proof of Theorem 9.1. Let zeS, a # 0, xeR. Then
| f@) ~ f@+a)+ld = f2) v f(e+a)
(since 8,(f(»), f(x+ a)) is a one-element set, see § 4) and
(2) pof(®) ~ pof(e+a)+lal = pof(z) v o f(w+a).

Hence, as we shall show,
(3) gof(r+a) =gof(@)+e or gof(@+a)=gof(r)—a.

Indeed, from (2) it follows that 8,{¢pof(z+a), gof(z+ )} is a one-
element set and

dipoflz+a), pof(z+p) = la—§pI

for every a, feR. Since 8§, is a metrically simple d-lattice, it follows from
Lemma 9.2 that the relation ¢o f(z)I¢o f(r+ a) does not hold.

Let us assume that for a certain arbitrary but hence forth fixed
a # 0 the first of the above-mentioned equalities from (3) holds. If
sign a’ = sign a, then also go f(z+a’) = o f(z)+ o, since o f is a metric
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function (i.e. d(pof(y), pof(2) < d(y,2) for y, z¢8). Now if sign o
= — sign «, then putting 2’ = z+ o’ we obtain

pof(@'—d') = gof(a')+e(—a’)
and

gof(z'—a' +a) =@of(z')+e(—a' +a),
where ¢ = —1 or 1, as sign(—a’) = sigh(— o'+ a). But
pof(¢'—d'+a) = gof(z+a) =gof(2)+a
and consequently
pof(x) = pof(')+e(—a"+a)—a.

Hence ¢ = 1, as
le(—a'+a)—a| = d(pof(2), pof(a)) < |a'].

Thus if for a certain zeS and a certain ¢ # 0 we have ¢gof(z+ «)
= gof(z)+ a, then gof(z+a') = po f(z)+ o for every a’'¢R, and simi-
larly, by duality, if for some ze¢S and « #0 we have gof(z+a)
= gof(r)—a, then pof(r+a’') = gof(x)—a’ for every a'c¢R.

We shall consider only the first case, since the second one can be
obtained the first case by substituting 87 for 8,. Let y¢8. Then ¢o f(y+ 8)
= gof(y)+B for f=d(x,y)+1 #0, since @of(y+p)=epof(y)—
implies

d(‘Pof(w']'ﬁ)a ¢0f(y+ﬂ)) zd(z,y)+2>d(z,y) =dx+B,y+P).
Thus
pof(y+p') =9of(y)+5

for every yeS8 and f'¢R (in the second case we have ¢o f(y+8')
= gof(y)—
Now we shall show that y © 2 implies gof(y) = ¢of(2) (in the second

case po f(y) 2 o f(2)).
Indeed, if y = 2, then

d(y,2) > d(y+d(y,2),2) > d(pof(y)+d(y, 2), po f(2).

Thus pof(y) = gof(z). The theorem is proved.

CoroLLARY 1. If f: 8 — 8, i8¢ an isometry of the metric d-laitices S
and 8,, and if ¢: 8, - R i8 a functional on 8, then pofis a functwnal or
a dual functional on 8.
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THEOREM 9.3. If a mapping f: 8 — 8, is an isometry of the metric
distributive d-lattices S and §,, then f is an isomorphism or a dual i8omorphism
or there exist d-lattices 8’ and 8’ and isomorphisms i: § - S'®8"° and
3,0 8, - 8'®8" such that i,of = 1i', i,of = 1", where

i(x) = (¢ (@), 9" (2)e S’ DS" for xS
and
i(2) = (i), 4 () e’ D" for weS,.

Proof. Let f: § — 8, be as in the theorem. We denote by A the
set of all functionals ¢: 8, — R such that gof is a functional on § and
by B the set of all functionals y: S, — R such that pof is a dual funectional
on 8. Then Corollary 1 implies that A v B = 8,. First we shall consider
the case where A and B are non-empty.

Let the mappings i; and 4," map 8, onto the functional d-lattices
S’ and 8", defined on 4 and B respectively, given by

(i1 (@) (@) = a(z), (i (x))(b) = b()
for zeS,, aed, beB. Then
i 8, —>4,(8) =8  and 4': 8 —i(8)=48"

are homomorphism of S, onto some d-lattices 8’ and §"’. Thus, by the
representation theorem, a mapping ¢,: §; > 8@®8"” given by ¢,(x)
= (i1(®), 4, (%)) for ze8, is an isomorphic imbedding.

We put i’ =4,0f: § >8',4" =14, of: § -8". The first map is a homo-
morphism of § onto §’, the second one is a dual homomorphism of 8
onto 8. Then the mapping i: § - 8'@S8’"°, where i(z) = (¢’ (z), ¢ (2))
for ze8, is an isomorphic imbedding. It only remains to show that
t: 8§ > 8'®8"° maps S8 onto S'@S'’%, i.e. that for every x, yeS§ there
exists a zeS such that

V(z) =1¢(2) and i'(y) =1i"(2).

Let #, yeS8. Then for
v = (oo {fl)—d=, ) ~ (v v ' (fy) +d(2, )

we have
i'(2) = (¥'(2) v i'of ! (fl@)—d(z, 9))) ~ (' (¥) © i'of " (f(y)+ d(z, v)
= (i’ (@) v (ilof(@)~ d(x, ) ~ (¥ (¥) © (fof(¥)+d(x, y)))
= (@) o (@@ —d(z, y) ~ (@) o (@ @) +d, )
= i'(@) ~ (I'(y) + d(z, ) = i’ (2),
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thus ¢’ (2) = i¢'(«), and analogously

i"(2) = (V"(@) ~ iof T fa)—d(z, ) v (i () ~ 'i”Of“(f(y)+d(w, )
= (i"(@) ~ (iof @) —d(z, ) v (" (¥) ~ (it of (y)+ d(=, y))
= (i" (@) ~ (i (@)—d(x, y))) v (i" () ~ (z'"(y)+d(w, v)))
= (i" (@) —d(x, y)) v i (y) =" (y);

thus ¢7(2) = ¢ (y).

(In the last equalities of the above two sequences of equalities we
used the fact that the homomorphisms ' and ¢'’ are metric.)

1f the set B (respectively A) is empty, then the homomorphisms
i, and 4’ (resp. a homomorphism 4," and a dual homomorphism i'’) are
isomorphisms (resp. an isomorphism and a dual isomorphism), thus the
isometry f = (i,)"'i’ (resp. f = (¢, )"'¢’’) is an isomorphism (resp. a dual
isomorphism). The theorem is proved.

From the above theorem and Theorem 4.17 we obtain, as a corollary,
the following generalization of Theorem 4.17:

COROLLARY 2. If 8 and 8; are functional metric d- lattwes defined on
the sets X and X, respectively and f: 8 — 8, is an isometric mapping of S
onto 8,, then there exists an affine mapping F: L — L, such that F|§ = f
(where, as in Theorem 4.17, L and L, are the linear spaces of all real func-
tions on X and X, respectively).

Now we can give a full generalization of the Banach-Stone theorem:

Turorec™ 9.4. If 8§ = C(X) and 8, = C(X,) are isometric perfect
d-lattices on the compact spaces X and X ,, then X and X, are homeomorphic.

Proof. If the d-lattices S and 8, are isomorphic (resp. dual isomorphic),
then by Theorem 6.9 there exists a homeomorphism ¢: X, - X such
that Ff = fo+b (resp. Ff = —fp+b) for a certain beC(X,) and for
every fefS.

Now if F: § — §, is an isometry mapping, but not an isomorphism
or 2 dual isomorphism, then by Theorem 9.3 there exist d-lattices
8’ and S’ such that S is isomorphic to 8'@8""° and S, to §’©S”’. Then
there exist pairs of closed-open sets A, B < X and 4, B, = X, such
that B = X\ A, B, = X\ A,, 8|4 is isomorphic to 8,/4, and S|B is dually
isomorphic to 8,|B,. Then, by Theorem 6.9, X and X, are homeomorphic
spaces.

Moreover, there exists a canonically associated homeomorphism
p: X, - X to F such that
fel@)+b(z) i wed,,

) Fit@) = —fo@)+b(@) if weB,
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for ‘a certain beC(X,) and any feS. Formula (4) also holds if F is
a homomorphism or a dual homomorphism then respectively B, or 4,
is the empty set. o

THEOREM 9.5. Let F: § — 8, be an isomelric imbedding of a perfect
functional d-lattice § = C(X) into a functional d-lattice S; = C(X,), where
X and X, are compact spaces, and let F(S) be a d-sublattice of S. Then
there exists a continuous function ¢: X, — X of X, onto X such that formula
(4) holds for a certain closed-open subset A, of X, B, =X ,\A4,, beC(X,)
and for any feC(X).

Proof. Let E: F(S) - 8§, be an isomorphism of F(8) onto a perfect
d-lattice §, = C(X,) and let F,: 8, - §, be an isomorphic. imbedding
such that Foc E(f) = f for any f ¢F(S). Then EoF: § — 8, is an isometry
of § onto §,. Thus, by Theorem 9.4, there exists a homeomorphism
¢o: Xo—X of X, onto X such that formula (4) holds for Eo F instead of F,
and for a closed-open subset A, of X,, By = X,\A4,, byeC(X,) and for
any feS. Next, it follows from Theorem 6.9 that there exists a contin-
uous mapping ¢,: X, > X, of X, onto X, and b,eC(X,) such that
Fof = foe,+b,. Hence formula (4) holds for

F =TF,0FoF, ¢=g0¢, A5 =g (4,
B, = ¢ '(By) = X,\N4,;, b=Dbop+beC(X,)
and for any feS. The theorem is proved. -
THEOREM 9.6. If a mapping ®: S — 8, s an isometric imbedding
of & metric distributive d-lattice S into a functional d-lattice S, = C(X,),
where X, is a compact space, then there exist closed subsets A’ and A''
of the space X, such that the mappings .
' .8 —>8,14", ¥':8->8,]4" and ¥:8 8,4,
where A = A" o A", given by
P'(f) = (BfHIA", Py =(PNHIA", V() =(2NlA4,
are a homomorphism, a dual homomorphism and an isometric imbedding
respectively.
Obviously, the sets A’ and A" are disjoint.
Proof. It is easy to see that if

(5) aif’,q') =.d(f'7f)+d(f1 g)‘l;d(g1 g)
and C
(Bf') (2)— (Dg') (%) = d(f', ¢'),
then
(Df)(z)— (Pg) () = d(f, g9),
where

[37,9,9'eS and xelX,.
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Let fyfsy-eos foyg heS and «; >0 for ¢ =1,..., n. There exists
a functional #: 8 - R such that

lu(g)—u(h)| = d(g, h).
We can assume that u(g) < u(h). Let
B = min(u(fy), ¥(fa), ..., u(fa), u(9)},
y = max(w(fy) + ay, w(fo)+ any ooy w(fa) + an, u(h)),
6 = diam{fy, fa, ...y fus fit ey, fot aey ooy futan, g, b}

Then for

= U (fimu(fo) v [g—u(@)+5—9
and

=Nl ) ~ g—wig) + 7+
we have . )

u(f) =p—090, u(f)=y+09
and

d(f,f) = u()—u(f) = 26+y—B > d(f, f),
whence .
a(fyf) =26+y—8

and

d(f, f) = a(f, f)+ a(fis fi+ @)+ A(fi+ ai, f)

= d(f, g)+d(g, W +d(h,f), fori=1,2,..,n,
since

a(f, f) = u(f)—u(f),
d(fi+ai, f) = w(f)—uifit @),
d(f, 9) = u(@—u(f),
| d(h, f) = u(f)—u(h)
and, by the assumption,

d(g, k) = u(k)—u(g)
and also

d(fivfi“i' a;) = u(fi+a;)— u(fy)

for ¢ =1, 2,...,n.
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Of course, there exists a point xe¢X, such that
(@) (@) — (Bf) (@) = a(f, ).
Hence, by (3), for such an =z we have

(6) |(Pg) (z)— (PR)(x)| = d(g, h),
(Df:) (@) — (P (fi+ a)) (@) = a;

for i =1,2,...,,n.

The set A((fiicicm (@)icicnr G, 1), of all zeX, such that (6) holds
is @ non-empty closed subset of the compact space X,. The intersection
of two such sets

A((fi)lgﬁ(n: (az‘)lga‘gn’ g, h) ) A((fi)ﬂd,-lgjg-n-fk’ (ai)'n+1<i<n+k’ q, h)
= A((fhcicnsrr (@) 1cicnrky g, B)

is also & set of this form, and the intersection of the family of all such
sets is non-empty. Thus

(7) there exists a point ze¢X, such that

|(Pg)(x) — (PR) (2)] = d(g, k)
and

(Pf) (@) —(P(f+ @) (=) = la]
for any feS and aeR.
Let A, be the set of all zeX, such that
(@f)(2)—(@(f+ @) ()] = |la] for any feS and aeR.

Then, by (7), the mapping ¥,: § - §,|4,, given by ¥,(f) = (?f)|4,,
is an isometric imbedding.
If

(¢(f+ ﬂo))(a’) = (Pf) (%) + ea,,
where feS, 0 # ay,eR, xe A, and ¢ = + 1, then evidently
(P(f+ a))(@) = (Bf)(2) +ea

for every ac¢R.
Furthermore, we have

(P(g+ a))(x) = (Pg)(®)+ £a

for any geS and aeR.
Indeed, if

(P(g+ Bo)) (z) = (Pg)(2)— ey
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for some f, # 0, then
(P(g+AH)a) = (Pg)(x)—¢f
for every feR. Hence
d(f, 9) = d(®(f+2d(f, ), Dlg+24(, 9)))
= (@) (x)+e-2d(f, 9)1— [(Pg) (x)— &-2d(f, 9)]|

= 4d(f, g)— (Df) () —(Dg) ()| = 3d(f, g)

in contradiction to f # g.
We put

A = |zed,: Xgﬂ(ib(f-i—a))(m) = (Pf) () + a]

and ‘ :
Al = {meAl:A E V;(‘D(H a))(z) = (@f)(z)—a).
Then S , |
A;\J.A;, =A1 and Air\Ai’ =0.
We shall show that for the mappings
P: 8 —>8,14;, and ¥/: 8-> 8,47
given by
P\f = (V)4 and  P{'f = (Pf)A)
we have
(8) feg iff Y fcWg and P, f=2¥'g
for any f, geS.
Indeed, :
Pi(f+a) =¥if+a
and

P (fta) =¥ f—a

for any feS8, a¢R, and the mappings ¥; and ¥,” are metric. Hence from
f < g follows

a(f,g) = d(f+d(f, g),‘g)
> d((f+d(f,9), ¥ig)

= d(iU;f'i'd(fa 9), .Pl'g)’
whence ?.f < ¥,g.

Analogously, since

af,9) = d(g’;’f_d(fv 9, T;’g),
we have ¥, f =2 P/'g.
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Now let us assume

¥.f<sWyg and  ¥'f2¥y.
Then

d(f, g9) > max|[d(¥\f+d(f, 9), ¥ig), A(Py'f—d(f, 9), Vi g)|
— max [d(Z](f+4(f, g )Wm)dHTU%ﬂL ), i)
= d(f+d(f,9),9)
whence f < g.

(9) If fQg (i.e. u(f) = u(g) for a certain functional »: § — R) and

f g, then Y,fQ¥,g (ie. (¥.f)(x) = (¥,g9)(x) for a certain
xeA,), for any f, geS.

Indeed, if f = g, then
Yifs¥yg and V/'f2¥y,
and from fQg follows
Pif+eg ¥ig or Pf—ed ¥y
for arbitrary £ > 0 and consequently it is easy to prove

Yif+ed Pig for any £>0
or

!l’l';f—s i'f’,"g for any & > 0.
Hence ¥,fQ¥,g.

Now let ey, €y...y €ny f1s foso-y fny §» B €8S. Then |u(g)— u(h)| = d(g, h)
for a certain functional %: § — E. We can assume that %(g) < (k). Let

f = (le—ute) ~

n

lm—um»nw—um»nw—um»

and

F = Ula—uted) o U lfimutfo) o lg—ulg) o (- uih).

)

Then %(f) —uf)—O‘i.ndf fandfora>d(f,f)quchtha.tf+aDh
and f—a = g we have

2a = d(f+a,f—a) = d(f+ a, h)+d(h, g)+ d(g, f— a).
From (9) follows
(10) (Z.9) () = (Z.])(x)

for a certain ze¢A4,. We shall consider the case of 2¢4;. Then

(1 (f+ ) (@) — (P (f— @) (@) = 2a = d(f+q, f—a)
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and by (5)
(11) [(¥19) (%) — (¥ k) () = d(g, k).
We have also

(P1(ei ~ £))(z) = min((¥)e)(2), (¥ifi)(z))
and

(i(e; © fi)) (z) = max((¥e) (@), (P1fi) (o))

for : =1,2,...,n.
Indeed,

ce—f

f < (ei—p) ~ (fi—Bo) < ;

and ¢;—f; _C.f or fi—p; gf for B; = min(u(e;), u(f;)), hence from (8)
and (10)
(#1) (@) = (Fif) @) < (¥i(e: ~ fi— fi)) (=)

< min((¥](e;— £:)) (@), (¥1(fi— B:)) (2))

< (¥if)(@),
ie.
(12°) (Pie: ~ f2))(#) = min((Pe)(2), (P)fi) (=)
and analogously we can prove
(13') (P1(e: © fo)) () = max ((P1e) (), (P1fi) ()

for 1 =1,2,...,n.
Similarly, if a point « such that (10) holds belongs to the set A)’,
then also

|(¥19) (@) — (¥1h) (®)] = d(g, k)

and

(127) (V1 (e ~ fi))(x) = max (¥, e;) (@), (¥} fi) (@),

(13") (#) (e © f0)(2) = min((P] &) (@), (P! f;)(@).
Let

(147) A’ ((ei)l@fsm (fihi<icns 9y h)

be the set of all z¢A;] such that the conditions (11), (12') and (13’) hold,
and let

(14”) A"((Gz‘)l@'gm (fihcicny 95 h)
be the set of all zeA, such that conditions (11), (12’’) and (13’’) hold.
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These sets are closed disjoint subsets of the compact space X, and
their union is a non-empty set. Further, the intersection of two sets of
form (14') or (14"'), where only g and h are fixed, is also a set of the form
(14") or (14”) respectively. Hence the intersection of all the sets of form
(11') or the intersection of all the sets of form (14'') is a non-empty set.
Thus it is easy to see that the theorem holds for the sets

A" = {red): oW, is a functional defined on S},
A" = {wed: ¥oWV, is a dual functional defined on S}
and functions ¥’ and ¥ given by

V'f = (V)4 = (¥f)4
and

Wrf = (P47 = (A

The theorem is proved.

COROLLARY 3. Let F: C(X) - C(Y) be an isometric imbedding, and
X, Y — compact spaces such that £(0) = 0 (but I' is not necessary linear).
Then there exists a closed subset Y, in Y such that for the restriction mapping
F: C(Y) —>C(Y,) given by F,f =f|Y, (feC(Y)) the composition FoF
18 a linear isometric imbedding.

From Theorem 9.5 and Theorem 9.6 we obtain

TiEOREM 9.7. Let F': S — 8, be an isometric imbedding of a perfect
d-lattice S = C(X) into a functional d-lattice S, = C(X,), where X and X,
are compact spaces. Then there exist closed disjoint subsets A’y A" of the space
X, such that there exists a continuous function p: A - X of A = A" v A"
onto X, such that formula (4) holds for a certain beC(A) and any feC(X).

Remark 1. Theorem 9.6 can be formulated in the following manner:

If &: § -8, is an isometric imbedding of a metric distributive
d-lattice § in a metric distributive d-lattice 8,, then

(i) there exist a d-lattice S’ and a homomorphism @': §, - 8 of §;
onto §” such that ¥ = @'oP: § — 8§ is a homomorphism or a dual homo-
morphism,
or

(i) there exist d-lattices 8’, 8’ and a homomorphism @': §, - §’
and a dual homomorphism @'’: §; — 8"’ of §, onto 8’ and 8’ respectively,
such that the mapping ¥: § - §’'@ 8" given by ¥(f) = (@0 D(f), D0 d(f))
iS an isometric imbedding.

This theorem, in general, is not true for the non-distributive d-lattices.
If 8 is a non-distributive d-lattice, S, is a distributive d-lattice, S = 8§,

and @: § - 8§, given by @(f) = f for feS, is an isometric imbedding,
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then the theorem does not hold (for example: 8 = 83, and 8, = R3,
see § 1, Example 8 or 10 and Example 4).

Remark 2. Let us consider the category C of compact spaces, where
Homg (X, Y) is defined as the set of all continuous mappings from any
closed subsets of space X onto space Y, and the category D of metric
distributive d-lattices, where Homp(S, 8;) is defined as the set of all
isometric imbeddings of S into §,. It easily follows from Theorem 9.7 that
there exists a contravariant functor of category D into category C.
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