Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Cardinal invariants for κ-box products: weight, density character and Suslin number

Seria

Rozprawy Matematyczne tom/nr w serii: 516 wydano: 2016

Zawartość

Warianty tytułu

Abstrakty

EN
The symbol $(X_{I})_{κ}$ (with κ ≥ ω) denotes the space $X_{I} := ∏_{i∈ I}X_{i}$ with the κ-box topology; this has as base all sets of the form $U = ∏_{i∈ I}U_{i}$ with $U_{i}$ open in $X_{i}$ and with $|{i∈ I: U_{i} ≠ X_{i}}| < κ$. The symbols w, d and S denote respectively the weight, density character and Suslin number. Generalizing familiar classical results, the authors show inter alia:
Theorem 3.1.10(b). If κ ≤ α⁺, |I| = α and each $X_{i}$ contains the discrete space {0,1} and satisfies $w(X_{i}) ≤ α$, then $w(X_{κ}) = α^{<κ}$.
Theorem 4.3.2. If $ω ≤ κ ≤ |I| ≤ 2^{α}$ and $X = (D(α))^{I}$ with D(α) discrete, |D(α)| = α, then $d((X_{I})_{κ}) = α^{<κ}$.
Corollaries 5.2.32(a) and 5.2.33. Let α ≥ 3 and κ ≥ ω be cardinals, and let ${X_{i}: i ∈ I}$ be a set of spaces such that |I|⁺ ≥ κ.
(a) If α⁺ ≥ κ and $α ≤ S(X_{i}) ≤ α⁺$ for each i ∈ I, then $α^{<κ} ≤ S((X_{I})_{κ}) ≤ (2^{α})⁺$; and
(b) if α⁺ ≤ κ and $3 ≤ S(X_{i}) ≤ α⁺$ for each i ∈ I, then $S((X_{I})_{κ}) = (2^{<κ})⁺$.

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 516

Liczba stron

41

Liczba rozdzia³ów

Opis fizyczny

Daty

wydano
2016

Twórcy

  • Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, U.S.A.
  • Department of Mathematical Sciences, Central Connecticut State University, New Britain, CT 06050, U.S.A.

Bibliografia

Języki publikacji

EN

Uwagi

Identyfikator YADDA

bwmeta1.element.bwnjournal-rm-doi-10_4064-dm748-2-2016

Identyfikatory

DOI
10.4064/dm748-2-2016

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.