Warianty tytułu
Abstrakty
The paper contains a revised, and extended by new results, part of the author's PhD thesis. The main objects that we study are toric varieties naturally associated to special Markov processes on trees. Such Markov processes can be defined by a tree T and a group G. They are called group-based models. The main, but not unique, motivation to consider these processes comes from phylogenetics. We study the geometry, defining equations and combinatorial description of the associated toric varieties. We obtain new results for a large class of not necessarily abelian group-based models, which we call G-models. We also prove that equations of degree 4 define the projective scheme representing the 3-Kimura model.
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne
tom/nr w serii:
511
Liczba stron
86
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Mathematisches Institut, Arnimallee 3, 14195 Berlin, Germany
Bibliografia
Języki publikacji
EN |
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm511-0-1
Identyfikatory
DOI
10.4064/dm511-0-1
Kolekcja
DML-PL
