Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Książka - szczegóły

Tytuł książki

## Functional equations stemming from numerical analysis

### Seria

Rozprawy Matematyczne tom/nr w serii: 508 wydano: 2015

### Abstrakty

EN
Always when a numerical method gives exact results an interesting functional equation arises. And, since no regularity is assumed, some unexpected solutions may appear. Here we deal with equations constructed in this spirit. The vast majority of this paper is devoted to the equation
$∑_{i=0}^{l} (y-x)^{i}[f_{1,i}(α_{1,i}x+β_{1,i}y) + ⋯ +f_{{k_{i}},i}(α_{k_{i},i}x+β_{k_{i},i}y)] = 0 (1)$
and its particular cases.
We use Sablik's lemma to prove that all solutions of (1) are polynomial functions. Since a continuous polynomial function is an ordinary polynomial, the crucial problem throughout the whole paper will be the continuity of solutions of (1).
The first of the particular forms of (1) which we consider is
F(y) - F(x) = (y-x)[a₁f(α₁x+β₁y)+ ⋯ +aₙf(αₙx+βₙy)] (2)
and is motivated by the quadrature formulas of numerical integration. Quadrature rules give exact results for polynomials, and therefore the following problem becomes interesting: do equations of the type (2) characterize polynomials? We present new results concerning this equation, in particular, we obtain a general solution of (2) in the case of rational $α_{i},β_{i}$, i = 1,...,n, and we show that if (2) has discontinuous solutions then the equation
a₁f(α₁x+β₁y) + ⋯ + aₙf(αₙx+βₙy) = 0
has nontrivial solutions. This result allows us to solve functional equations motivated by all classical quadrature rules such as the rule of Simpson (this equation was already solved earlier), Radau, Lobatto and Gauss.
Further we also consider the following equation:
F(y) - F(x) = (y-x)[a₁f(α₁x+β₁y)+ ⋯ +aₙf(αₙx+βₙy)] + (y-x)²[g(y)-g(x)], (3)
which is connected with Hermite quadrature formulas where on the right-hand side derivatives of f are used;
F(y) - F(x) = (y-x)[a₁f(x) + b₁f(α₁x+β₁y) + ⋯ + bₙf(αₙx+βₙy) + a₁f(y)]
+ (y-x)³[c₁g(α₁x+β₁y) + ⋯ + cₙg(αₙx+βₙy)], (4)
which stems from Birkhoff quadrature rules where f'' is involved; and
$g(αx+βy)(y-x)^{k} = a₁f(α₁x+β₁y) + ⋯ + aₙf(αₙx+βₙy)$, (5)
which is motivated by formulas used in numerical differentiation. Results concerning (5) are used to obtain new facts about the well known equation
f[x₁,...,xₙ] = g(x₁+⋯ +xₙ)
(f[x₁,...,xₙ] is the nth divided difference of f).
We also present a direct method which may beused to show that solutions of (2) must be polynomial functions and, motivated by this method, we obtain a generalization of the Aczél equation
F(y) - F(x) = (y-x)g((x+y)/2).
At the end of the paper we present a list of open problems.

### Tematy

Kategoryzacja MSC:

Warszawa

### Seria

Rozprawy Matematyczne tom/nr w serii: 508

57

wydano
2015

### Twórcy

autor
• Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

 EN

### Uwagi

bwmeta1.element.bwnjournal-rm-doi-10_4064-dm508-0-1

### Identyfikatory

DOI
10.4064/dm508-0-1

### Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.