Warianty tytułu
Abstrakty
The spaces L¹(m) of all m-integrable (resp. $L¹_{w}(m)$ of all scalarly m-integrable) functions for a vector measure m, taking values in a complex locally convex Hausdorff space X (briefly, lcHs), are themselves lcHs for the mean convergence topology. Additionally, $L¹_{w}(m)$ is always a complex vector lattice; this is not necessarily so for L¹(m). To identify precisely when L¹(m) is also a complex vector lattice is one of our central aims. Whenever X is sequentially complete, then this is the case. If, additionally, the inclusion $L¹(m) ⊆ L¹_{w}(m)$ (which always holds) is proper, then L¹(m) and $L¹_{w}(m)$ contain lattice-isomorphic copies of the complex Banach lattices c₀ and $ℓ^∞$, respectively. On the other hand, whenever L¹(m) contains an isomorphic copy of c₀, merely in the lcHs sense, then necessarily $L¹(m) ⊊ L¹_{w}(m)$. Moreover, the X-valued integration operator Iₘ: f ↦ ∫ fdm, for f ∈ L¹(m), then fixes a copy of c₀. For X a Banach space, the validity of $L¹(m) = L¹_{w}(m)$ turns out to be equivalent to Iₘ being weakly completely continuous. A sufficient condition for this is the (q,1)-concavity of Iₘ for some 1 ≤ q < ∞. This criterion is fulfilled when Iₘ belongs to various classical operator ideals. Unlike for $L¹_{w}(m)$, the space L¹(m) can never contain an isomorphic copy of $ℓ^{∞}$. A rich supply of examples and counterexamples is presented. The methods involved are a hybrid of vector measure/integration theory, functional analysis, operator theory and complex vector lattices.
Słowa kluczowe
Tematy
Kategoryzacja MSC:
- 46A40: Ordered topological linear spaces, vector lattices
- 47B40: Spectral operators, decomposable operators, well-bounded operators, etc.
- 28B05: Vector-valued set functions, measures and integrals
- 47B60: Operators on ordered spaces
- 46B40: Ordered normed spaces
- 46G10: Vector-valued measures and integration
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne
tom/nr w serii:
500
Liczba stron
68
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- 112 Marconi Crescent, Kambah, ACT 2902, Australia
autor
- Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany
autor
- Instituto de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
Bibliografia
Języki publikacji
EN |
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm500-0-1
Identyfikatory
DOI
10.4064/dm500-0-1
Kolekcja
DML-PL
