Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Compactness and extreme points of the set of quasi-measure extensions of a quasi-measure

Seria
Rozprawy Matematyczne tom/nr w serii: 493 wydano: 2013
Zawartość
Warianty tytułu
Abstrakty
EN
The memoir is based on a series of six papers by the author published over the years 1995-2007. It continues the work of D. Plachky (1970, 1976). It also owes some inspiration, among others, to papers by J. Łoś and E. Marczewski (1949), D. Bierlein and W. J. A. Stich (1989), D. Bogner and R. Denk (1994), and A. Ülger (1996). Let 𝔐 and ℜ be algebras of subsets of a set Ω with 𝔐 ⊂ ℜ. Given a quasi-measure μ on 𝔐, i.e., μ ∈ ba₊(𝔐), we denote by E(μ) the convex set of all quasi-measure extensions of μ to ℜ. Moreover, we denote by s, w and w* the strong, weak and weak* topologies of the dual Banach lattice ba(ℜ), respectively. Our starting point are the following two properties of E(μ) and extrE(μ), which are easy consequences of known results:
(a) (E(μ),w*) is compact;
(b) extrE(μ) is closed in (ba(ℜ),s).
We study the following conditions related to (a) and (b):
(i) (E(μ),s) is compact;
(ii) (E(μ),w) is compact;
(iii) s and w coincide on E(μ);
(iv) s and w coincide on extrE(μ);
(v) s and w* coincide on extrE(μ);
(vi) w and w* coincide on extrE(μ);
(vii) extrE(μ) is closed in (ba(ℜ),w);
(viii) extrE(μ) is closed in (ba(ℜ),w*);
(ix) (extrE(μ),s) is compact;
(x) (extrE(μ),w) is compact;
(xi) (extrE(μ),w*) is compact;
(xii) (extrE(μ),s) is discrete;
(xiii) (extrE(μ),w) is discrete;
(xiv) (extrE(μ),w*) is discrete;
(xv) extrE(μ) is dense in (E(μ),w);
(xvi) extrE(μ) is dense in (E(μ),w*).
In most cases, we find various equivalent conditions expressed in topological, affine-topological and measure-theoretic terms. To this end, we use, in particular, the antimonogenic component $μ^{a}$ of μ. (This is the minimal ν ∈ ba₊𝔐 such that ν ≤ μ and E(μ-ν) is a singleton.) Here are some sample results: (viii) holds if and only if $μ^{a}$ is atomic; both (xiii) and (xiv) are equivalent to the condition that $μ^{a}$ have finite range; (xvi) holds if and only if $μ^{a}$ is nonatomic. One of our main tools is an affine-topological representation of E(μ) for atomic μ as the countable Cartesian product of simplex like sets. We also study some other topological properties of extrE(μ), such as zero-dimensionality and various kinds of connectedness. Some of our results involve the cardinality 𝔪 of extrE(μ). In general, there are no restrictions on 𝔪 except for 𝔪 ≠ 0. However, if μ is nonatomic, then $𝔪^{ℵ₀} = 𝔪$. The case where 𝔪 ≤ ℵ₀ is also thoroughly investigated.
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 493
Liczba stron
59
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2013
Twórcy
  • Institute of Mathematics, Polish Academy of Sciences, Wrocław Branch, Kopernika 18, 51-617 Wrocław, Poland
Bibliografia
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm493-0-1
Identyfikatory
DOI
10.4064/dm493-0-1
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.