Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Infinitesimal rigidity of smooth convex surfaces through the second derivative of the Hilbert-Einstein functional

Seria
Rozprawy Matematyczne tom/nr w serii: 492 wydano: 2013
Zawartość
Warianty tytułu
Abstrakty
EN
The paper is centered around a new proof of the infinitesimal rigidity of smooth closed surfaces with everywhere positive Gauss curvature. We use a reformulation that replaces deformation of an embedding by deformation of the metric inside the body bounded by the surface. The proof is obtained by studying derivatives of the Hilbert-Einstein functional with boundary term.
This approach is in a sense dual to proving Gauss infinitesimal rigidity, that is, rigidity with respect to the Gauss curvature parametrized by the Gauss map, by studying derivatives of the volume bounded by the surface. We recall that Blaschke's classical proof of infinitesimal rigidity is also related to Gauss infinitesimal rigidity, but in a different way: while Blaschke uses the Gauss rigidity of the same surface, we use the Gauss rigidity of the polar dual. The two connections between metric and Gauss deformations generate the Darboux wreath of 12 surfaces.
The duality between the Hilbert-Einstein functional and the volume, as well as between both kinds of rigidity, becomes perfect in the spherical and in the hyperbolic-de Sitter space.
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 492
Liczba stron
58
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2013
Twórcy
  • Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, D-14195 Berlin, Germany
Bibliografia
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm492-0-1
Identyfikatory
DOI
10.4064/dm492-0-1
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.