Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

General position properties in fiberwise geometric topology

Seria
Rozprawy Matematyczne tom/nr w serii: 491 wydano: 2013
Zawartość
Warianty tytułu
Abstrakty
EN
General position properties play a crucial role in geometric and infinite-dimensional topologies. Often such properties provide convenient tools for establishing various universality results. One of well-known general position properties is DDⁿ, the property of disjoint n-cells. Each Polish $LC^{n-1}$-space X possessing DDⁿ contains a topological copy of each n-dimensional compact metric space. This fact implies, in particular, the classical Lefschetz-Menger-Nöbeling-Pontryagin-Tolstova embedding theorem which says that any n-dimensional compact metric space embeds into the (2n+1)-dimensional Euclidean space $ℝ^{2n+1}$. A parametric version of this result was recently proved by B. Pasynkov: any n-dimensional map p: K → M between metrizable compacta with dim M = m embeds into the projection $pr_{M}: M × ℝ^{2n+1+m} → M$ in the sense that there is an embedding $e: K → M × ℝ^{2n+1+m}$ with $pr_{M} ∘ e = p$. This feature of $ℝ^{2n+1+m}$ can be derived from the fact that the space $ℝ^{2n+1+m}$ satisfies the general position property $m - \overline{DD}ⁿ = m - \overline{DD}^{{n,n}}$, which is a particular case of the 3-parameter general position property $m - \overline{DD}^{{n,k}}$ introduced and studied in this paper. We shall give convenient "arithmetic" tools for establishing the $m - \overline{DD}^{{n,k}}$-property and on this base obtain simple proofs of some classical and recent results on (fiber) embeddings. In particular, the Pasynkov theorem mentioned above, as well as the results of P. Bowers and Y. Sternfeld on embedding into a product of dendrites, follow from our general approach. Moreover, the arithmetic of the $m - \overline{DD}^{{n,k}}$-properties established in our paper generalizes some results of W. Mitchell, R. Daverman and D. Halverson.
The paper consists of two parts. In the first part we survey the principal results proved in this paper and discuss their applications and interplay with existing results in this area. The second part contains the proofs of the principal results announced in the first part.
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 491
Liczba stron
120
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
  • Institute of Mathematics, Jan Kochanowski University in Kielce, Świętokrzyska 15, 25-406 Kielce, Poland
  • Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, Universytetska 1, 79000, Lviv, Ukraine
autor
  • Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada
Bibliografia
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm491-0-1
Identyfikatory
DOI
10.4064/dm491-0-1
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.