Warianty tytułu
Abstrakty
Given a self-adjoint operator H₀, a self-adjoint trace-class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and cokernel, using the limiting absorption principle an explicit set Λ(H₀;F) ⊂ ℝ of full Lebesgue measure is defined, such that for all λ ∈ Λ(H₀+rV;F) ∩ Λ(H₀;F), where r ∈ ℝ, the wave $w_{±}(λ;H₀+rV,H₀)$ and the scattering matrices S(λ;H₀+rV,H₀) can be defined unambiguously. Many well-known properties of the wave and scattering matrices and operators are proved, including the stationary formula for the scattering matrix. This version of abstract scattering theory allows us, in particular, to prove that
$det S(λ;H₀+V,H₀) = e^{-2πiξ^{(a)}(λ)}$, a.e. λ ∈ ℝ,
where $ξ^{(a)}(λ) = ξ^{(a)}_{H₀+V,H₀}(λ)$ is the so called absolutely continuous part of the spectral shift function defined by
$ξ^{(a)}_{H₀+V,H₀}(λ) := d/dλ ∫_{0}^{1} Tr(VE^{(a)}_{H₀+rV}(λ))dr$
and where $E_{H}^{(a)}(λ) = E^{(a)}_{(-∞,λ)}(H)$ denotes the absolutely continuous part of the spectral projection. Combined with the Birman-Kreĭn formula, this implies that the singular part of the spectral shift function,
$ξ^{(s)}_{H₀+V,H₀}(λ) := d/dλ ∫_{0}^{1} Tr(VE^{(s)}_{H₀+rV}(λ))dr$,
is an almost everywhere integer-valued function, where $E_{H}^{(s)}(λ) = E^{(s)}_{(-∞,λ)}(H)$ denotes the singular part of the spectral projection.
It is also shown that eigenvalues of the scattering matrix S(λ;H₀+V,H₀) can be connected to 1 in two natural ways, and that the singular spectral shift function measures the difference of the spectral flows of eigenvalues of the scattering matrix.
$det S(λ;H₀+V,H₀) = e^{-2πiξ^{(a)}(λ)}$, a.e. λ ∈ ℝ,
where $ξ^{(a)}(λ) = ξ^{(a)}_{H₀+V,H₀}(λ)$ is the so called absolutely continuous part of the spectral shift function defined by
$ξ^{(a)}_{H₀+V,H₀}(λ) := d/dλ ∫_{0}^{1} Tr(VE^{(a)}_{H₀+rV}(λ))dr$
and where $E_{H}^{(a)}(λ) = E^{(a)}_{(-∞,λ)}(H)$ denotes the absolutely continuous part of the spectral projection. Combined with the Birman-Kreĭn formula, this implies that the singular part of the spectral shift function,
$ξ^{(s)}_{H₀+V,H₀}(λ) := d/dλ ∫_{0}^{1} Tr(VE^{(s)}_{H₀+rV}(λ))dr$,
is an almost everywhere integer-valued function, where $E_{H}^{(s)}(λ) = E^{(s)}_{(-∞,λ)}(H)$ denotes the singular part of the spectral projection.
It is also shown that eigenvalues of the scattering matrix S(λ;H₀+V,H₀) can be connected to 1 in two natural ways, and that the singular spectral shift function measures the difference of the spectral flows of eigenvalues of the scattering matrix.
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne
tom/nr w serii:
480
Liczba stron
102
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, SA 5042, Australia
Bibliografia
Języki publikacji
EN |
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm480-0-1
Identyfikatory
DOI
10.4064/dm480-0-1
Kolekcja
DML-PL
