Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Absolutely continuous and singular spectral shift functions

Seria
Rozprawy Matematyczne tom/nr w serii: 480 wydano: 2011
Zawartość
Warianty tytułu
Abstrakty
EN
Given a self-adjoint operator H₀, a self-adjoint trace-class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and cokernel, using the limiting absorption principle an explicit set Λ(H₀;F) ⊂ ℝ of full Lebesgue measure is defined, such that for all λ ∈ Λ(H₀+rV;F) ∩ Λ(H₀;F), where r ∈ ℝ, the wave $w_{±}(λ;H₀+rV,H₀)$ and the scattering matrices S(λ;H₀+rV,H₀) can be defined unambiguously. Many well-known properties of the wave and scattering matrices and operators are proved, including the stationary formula for the scattering matrix. This version of abstract scattering theory allows us, in particular, to prove that
$det S(λ;H₀+V,H₀) = e^{-2πiξ^{(a)}(λ)}$, a.e. λ ∈ ℝ,
where $ξ^{(a)}(λ) = ξ^{(a)}_{H₀+V,H₀}(λ)$ is the so called absolutely continuous part of the spectral shift function defined by
$ξ^{(a)}_{H₀+V,H₀}(λ) := d/dλ ∫_{0}^{1} Tr(VE^{(a)}_{H₀+rV}(λ))dr$
and where $E_{H}^{(a)}(λ) = E^{(a)}_{(-∞,λ)}(H)$ denotes the absolutely continuous part of the spectral projection. Combined with the Birman-Kreĭn formula, this implies that the singular part of the spectral shift function,
$ξ^{(s)}_{H₀+V,H₀}(λ) := d/dλ ∫_{0}^{1} Tr(VE^{(s)}_{H₀+rV}(λ))dr$,
is an almost everywhere integer-valued function, where $E_{H}^{(s)}(λ) = E^{(s)}_{(-∞,λ)}(H)$ denotes the singular part of the spectral projection.
It is also shown that eigenvalues of the scattering matrix S(λ;H₀+V,H₀) can be connected to 1 in two natural ways, and that the singular spectral shift function measures the difference of the spectral flows of eigenvalues of the scattering matrix.
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 480
Liczba stron
102
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2011
Twórcy
  • School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, SA 5042, Australia
Bibliografia
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm480-0-1
Identyfikatory
DOI
10.4064/dm480-0-1
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.