Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Componentwise and Cartesian decompositions of linear relations

Seria
Rozprawy Matematyczne tom/nr w serii: 465 wydano: 2009
Zawartość
Warianty tytułu
Abstrakty
EN
Let A be a, not necessarily closed, linear relation in a Hilbert space ℌ with a multivalued part mul A. An operator B in ℌ with ran B ⊥ mul A** is said to be an operator part of A when A = B +̂ ({0} × mul A), where the sum is componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for an operator part are established via the so-called canonical decomposition of A. In addition, conditions are developed for the above decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation A is said to have a Cartesian decomposition if A = U + iV, where U and V are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of A and the real and imaginary parts of A is investigated.
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 465
Liczba stron
59
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
  • Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland
  • Department of Mathematics and Computing Science, University of Groningen, P.O. Box 407, 9700 AK Groningen, Nederland
  • Instytut Matematyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland
Bibliografia
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm465-0-1
Identyfikatory
DOI
10.4064/dm465-0-1
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.