Warianty tytułu
Abstrakty
We investigate Hartman functions on a topological group G. Recall that (ι,C) is a group compactification of G if C is a compact group, ι: G → C is a continuous group homomorphism and ι(G) ⊆ C is dense. A bounded function f: G → ℂ is a Hartman function if there exists a group compactification (ι,C) and F: C → ℂ such that f = F∘ι and F is Riemann integrable, i.e. the set of discontinuities of F is a null set with respect to the Haar measure. In particular, we determine how large a compactification for a given group G and a Hartman function f: G → ℂ must be to admit a Riemann integrable representation of f. The connection to (weakly) almost periodic functions is investigated. In order to give a systematic presentation which is self-contained to a reasonable extent, we include several separate sections on the underlying concepts such as finitely additive measures on Boolean set algebras, means on algebras of functions, integration on compact spaces, compactifications of groups and semigroups, the Riemann integral on abstract spaces, invariance of measures and means, continuous extensions of transformations and operations to compactifications, etc.
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne
tom/nr w serii:
461
Liczba stron
72
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria
autor
- Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8-10/104, 1040 Vienna, Austria
Bibliografia
Języki publikacji
EN |
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm461-0-1
Identyfikatory
DOI
10.4064/dm461-0-1
Kolekcja
DML-PL
