Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Measurability of multifunctions of two variables

Seria
Rozprawy Matematyczne tom/nr w serii: 452 wydano: 2008
Zawartość
Warianty tytułu
Abstrakty
EN
We consider multifunctions F of two variables, with values in a topological space, whose first argument ranges over a measurable space, and second over a space with various possible structures: topological, metric (with a differentiation basis if needed), normed linear, etc. We are mainly interested in product measurability and superpositional measurability of F. Some connections between classes of multifunctions with these properties are considered. In Chapter 2, several product measurability results are proved for multifunctions which are measurable in the first and satisfy some special hypothesis in the second variable, e.g. • are either right continuous or left continuous in some sense, • are approximately h-equicontinuous with respect to a differentiation basis, • are lower semicontinuous and upper quasi-continuous, • are both upper and lower strong quasi-continuous with respect to a differentiation basis, • are derivatives. Chapter 3 is devoted to superpositional measurability of multifunctions. Some of the results of this chapter are consequences of results of Chapter 2 and Zygmunt's theorem on superpositional measurability of multifunctions which are measurable with respect to the product of a complete σ-field and the σ-field of Borel subsets of a Polish space. In general, a product measurable multifunction need not be superpositionally measurable. We prove that (in suitable spaces) multifunctions which are product measurable with respect to a σ-field more general than the product σ-field above and which also fulfill certain density conditions in the second variable are also superpositionally measurable. Counterexamples are also given to emphasize the need for some of the hypotheses.
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne tom/nr w serii: 452
Liczba stron
67
Liczba rozdzia³ów
Opis fizyczny
Daty
wydano
2008
Twórcy
  • Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
Bibliografia
Języki publikacji
EN
Uwagi
Identyfikator YADDA
bwmeta1.element.bwnjournal-rm-doi-10_4064-dm452-0-1
Identyfikatory
DOI
10.4064/dm452-0-1
Kolekcja
DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.