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ON A SPECIAL CASE WHEN THE VARIANCE
OF A LEAST SQUARES ESTIMATOR
DOES NOT TEND TO ZERO

The purpose of the present paper is to show a rather interesting
case when the estimator of the regression coefficient of a regression func-
tion estimated by the classical least squares method from time series data
is not consistent. This case, although a relatively simple one, has appar-
ently been overlooked so far in the statistical literature.

Let us assume the simplest form of the regression funection

1) E(Y;|z) = ax,
which can be equivalently written as
(2) Y, = am+ &.

In the formulas (1) and (2) « denotes the unknown constant parameter,
the z’s are fixed real numbers(®) such that

(3) O<m<ey <M< +oo for all natural ¢

and & is a random component with mathematical expectation equal
to zero. We assume further that random variables &, &,,..., &, are
mutually independent.

The numerical value a of the classical least squares estimator 4 of
the parameter a is obtained by minimizing the sum of squares of the
observed residuals, i.e. by finding such ¢ which minimizes the expression

n
6 = Z Yi— axy)?
=1

where the ¢;’s are the residuals and the y;’s are the observed values of ¥,.

'.'_M:

(1) Equivalently we may consider the x;'s as fixed realisations of random
variables conditioning thus our analysis by the condition that X; = 21, Xo = s,
-+» Xn = zn. For equivalence of the two approaches, see for instance Johnston [2].
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As is easily seen, the classical least squares estimator of the para-
meter is

n
Z Y,
—_— t=1 —_—
= - .
P
=1

It is easy to show that under the assumptions listed above the esti-
mator 4 is unbiased. Its variance, however, may not tend to zero when
the number n of (time series) observations increases to infinity. In order
to show it let us find the variance of the estimator A

(4) A

n n
. tz_': tht D2 (t‘Z: tht)
D*4) =D | & - .

té‘ & (tZ wf) 2

By the assumption, the random variables & (t =1, 2,...) are inde-
pendent and — as can be seen from (2) — the same applies to the varia-
bles Y,;. Hence

n n
D # D*(Y)) 2, @ D*(&)
() DY(4) = = == :

S (e

In the particular case when for every ¢ there is D?(&) = ¢® we get the
usual formula

(6) D*(4) =

n

2
=1

It is known that (6) tends to zero when the number of observations
increases to infinity in sueh a way that the variance of the s is positive
and remains (approximately) constant.

The situation when D?(§;) = o® for all { may not, however, occur in
practice. It is possible to find a model (see reference [3]) when, due to
the growing impact of other, besides x;, factors on Y;, the variance of
the random components is an increasing function of time.

Without going into mathematical details of this model (2) an example
will be given of the situation in which one can reasonably expect the

(*) The mathematical formulation can be found in [3].



A special case when the variance does mol tend to zero 393

variance of the random component to increase in time steadily. Let us
suppose that we wish to estimate from statistical time series data the
demand function for radio sets, say, and that the chosen form of this
funection is that introduced first by Stone and Rowe [4] and which has
been largely used since by many authors.

Stone and Rowe assume the demand for a given consumer durable
good to be dependent on such factors as the price of this commodity,
the average level of consumers’ income, the level of stock of this commodity
already being used by the consumers and on the rate of decay of durable
items. The demand function is dynamic in the sense that it relates quan-
tities referring to different periods of time.

On the other hand, due to the fast technical progress, the variety
of consumer durable goods on the market is increasing. This process means
that not only new variations of already known commodities are intro-
duced on the market but also totally new types of consumer durable
goods are supplied on the market. This means, however, that the possi-
bilities of choice and substitution are steadily increasing, i.e. new factors
begin to influence the decisions of consumers and their inpact can be
supposed to be ever stronger and stronger. As all these newly appearing
factors are not explicitly accounted for in the demand function their
effect will be revealed by the size of the random components whose varia-
tion will tend to increase. This, however, means that D2(¢,) is no longer
constant but that it is a function of time, instead.

Suppose now that m - co. If D*(&) is increasing with time fast
enough the variance D*(4) may not tend to zero. Let us assume, for
instance, that

(7 D (&) = pid®

where g > 0. Substituting (7) into (5) we get

pa* 3 ta}

t=1

(8) DH4) = —%
S

We shall show now that the variance (8) does not tend to zero when
n — oo. Using the assumptions expressed by the inequalities (3) we can
write

n
2
"2t wnm—1)

n

2

| < _

gw 2)2 /(”M2)2 2M*’
=1

(9) >0.
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Obviously

mmﬁn(n—l) m? =0
nowo  2M'E T 2M*

and, because of (8) and (9), the variance of the estimator A does not
tend to zero.

The practical implications of this result are that, when estimating
a regression function by time series data, one should pay attention to the
behaviour of the random components £;. If there is ground for conclusion
that D?(£;) increases with time linearly of faster(®) it may be worth while
to cut the time series used for the estimation of the parameters. The
use of too long series may deteriorate the efficiency of the estimation.

An alternative method of approach may be that of using another
estimation technique, namely the so-called generalized least squares
(see reference [1]) in which, instead of assuming D?(&,) to be constant,
the observations are weighed in some way by the elements of the matrix
of the variances and covariances of the random eomponents &;. In the
case of the relation (2) the generalized least squares estimator of the
parametr a is

”
Y,

2

= [of

(10) Ar =2
T

Z
i—1 Ot

and its variance can be shown to be

1
(11) D*(4A*) = ——;
2
=1 0't2
where o = D*(&). ‘

Now it is easy to show that even if the relation (7) holds true, i.e.
when the variance of the random components increases linearly in time,
D2(A*) is still convergent to zero when n — oo,

In order to prove it let us substitute (7) into (11)

1
D4 = ——
1 ped
ﬂ02¢=1 t

() Appropriate tests can be found, for instance, in [3].
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Because of (3), there is obviously
n
w31
- t
t=1

and since the series 2’1 J/t diverges the same applies to the series Zwt [t
t=

and, hence, D*(4*) tends to zero when n — oo, This shows the advantage
of using the method of generalized least squares as compared with the
classical method of least squares in the simple case considered here,

By using a similar argument it can be shown that the estimator 4
has the same property also in the more general case when there is

(12) D(&) = pfd’, £>0

where(*) 0 < p < 1. Since 1n this case the series 21 [/t diverges the same
must apply to the series Zwt /i and the Varlance of the estimator A*

is seen to tend to zero When n — oo,

On the other hand, if the variance of the random component increases
in time faster than linearly then even Aitken’s generalized method of
least squares does not provide an estimator whose variance tends to zero
when 7 — oo, More specifically, we shall assume now the parameter p
in the relation (12) to be greater than one. Under this assumption we shall
show that

(13) limD*(4*) =¢

where 0 < ¢ < +o0, i.e. we shall show that the variance of the general-
ized least squares estimator does not tend to zero when the sample size
increases indefinitely.

In order to prove that when p > 1 the relation (13) holds true let us
note that because of (3) and (11) the following inequalities are true

D} (4% > 1 _ !
i=1 o /3"2:=1 &

1 1

D*(4*) < = %

(*) We omit here the case p < 0 since with ¢ taking only natural values the rela-
tion (12) would imply a reduction of D?(&) in time. In this case, as ig easily seen,
both A and A* have the variances which tend to zero as n — oo.
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But, since p > 1, the series ) '1/¢* is convergent. Let its sum be de-
t=1

noted by S, where obviously S > 0. Hence

po ) Bo’
14 — LlimD¥ 4" < —.

Since o’ [MS is positive and o’ /mS is finite, the relation (13) is proved.

Similar results can be obtained for more general types of estimated
relations, namely for regression functions with several independent
variables. The method of approach is essentially the same but the algebra
involved is of course much more complicated.

It is perhaps worthwhile to point out the fact that the estimator A
discussed in this note is an interesting example of an unbiased estimator
which may not be consistent.
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Z. PAWLOWSKI (Katowice)

O SPECJALNYM PRZYPADKU, GDY WARIANCJA OTRZY MANEGO
ZA POMOCA METODY NAJMNIEJSZYCH KWADRATOW ESTYMATORA
NIE DAZY DO ZERA PRZY n—co

STRESZCZENIE

W pracy omawia si¢ prosty przypadek, gdy metoda najmniejszych kwadratéw
zastosowana do estymacji parametru a réwnania (2) nie daje estymatora, ktérego
wariancja dazylaby do zera przy n — oo. W réwnaniu (2) wielkoéei x; traktuje sie
jako nielosowe, a wielkodei & sa skladnikami losowymi o nadziejach matematycznych
réwnyech zeru. Pokazuje sie, ze jesli warianecje skladnikéw losowyech spelniajg rela-
cje (7), to jest rosng liniowo w czasie, wtedy estymator A okreflony réwnaniem (4)
jest wprawdzie nieobcigzony, ale jego wariancja nie dazy do zera gdy liezba obser-
wacji wzrasta nieograniczenie. W tego rodzaju przypadkach lepiej stosowaéd jest
uogblniong metode najmniejszych kwadratéw Aitkena. Odpowiedni estymator A*
parametru ¢ ma wtedy postaé (10) i jego wariancja dazy do zera gdy mn— oo, jezeli
tylko wariancja skladnikéw losowyeh nie wzrasta w czasie szybeiej niz liniowo.
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3. HTABJIO BCKH (Karosmne)

O CHEUAJBHOM CIYYAE, B KOTOPOM JUCHOEPCHA OLEHKH,
IO YYEHHON C IOMOH[BIO METOJA HAMMEHBIIHX KBAJPATOB
HE CTPEMHATCA K HYJIO IIPH n->oco

PE3IOME

B crarbe paccuarpuBaercs DpOCTON CHyyall, B KOTOPOM NpHMeHeHHEe MeTOHA
HauMeHBUINX KBAZAPATOB K TApamMeTpu a B YPaBHeHuM (2) He NPHMBORUT K OLEHKE,
AucOepcusi KOTOPOH CTPEMMTCA K HYNI0 NpH n—> oo. B ypasuennu (2) Bemmuunm ¢
CYMTAOTCHA HeCIAy4YalHEMU, 4 BeNHUYMHH & ABIAKNTCA CIYYaHHHIMHU CIAraeMHMH C Ma-
TeMATHYECKUMY OKUIAHMAMU paBHHMH HyJwo. IlokasaHo, Yro ecin BUCHEPCHH CIIY-
YallHHX CJIaraeMHX yAOBIETBOPAIOT YCioBuUi0 (7), 2T0 3HAYUT JuHENHO BO3pacTawnT
CO BpeMeHeM, TOrAa olieHKa A ompepnelseMas ypaBHeHUeM (4) XOTH U He ABIAETCH
CMEMEeHHON, HO ee AUCTIepCHA He CTPEMHTCH K HYJNI0 KOrga 4ncio Habmomenmli Heo-
FPaEMYEHO YBenMYMBAETCA. B TAKAX CIYyYasAXx dydyile NPUMEHAT: 060GmenHml Meron
HauMeHLMINX KBajgparos Anrkena. CoorBeTcTBymmas ouenka A* mapamerpa a mmeer
Torsia Bup (10) u ee AuUCHEPCHA CTPEMHUTCH K HYJIO HPU N—> 00 eCIAU TONBKO JHCHEPCHA
CcIydYaliHHX cIaraeMHX BO3pacCTaeT CO BpeMeHeM He GHcTpee 4eM JuHEHHO.
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