ArticleOriginal scientific text
Title
Goodness-of-fit tests based on characterizations of continuous distributions
Authors 1, 2
Affiliations
- Department of Statistics, University of Adelaide, North Tce, Adelaide, South Australia, 5001
- Institute of Mathematics, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
Abstract
We construct goodness-of-fit tests for continuous distributions using their characterizations in terms of moments of order statistics and moments of record values. Our approach is based on characterizations presented in [2]-[4], [5], [9].
Keywords
uniform, Weibull, exponential, Pareto distributions, significance probability, k-record values, goodness-of-fit tests, order statistics, characterization of distributions
Bibliography
- W. Dziubdziela and B. Kopociński, Limiting properties of the
-th record values, Zastos. Mat. 15 (1976), 187-190. - Z. Grudzień and D. Szynal, Characterization of continuous distributions in terms of moments of extremal statistics, J. Math. Sci. 81 (1996), 2912-2936.
- Z. Grudzień and D. Szynal, Characterizations of continuous distributions via moments of the
-th record values with random indices, Brandenburgische Technische Universität Cottbus, Fakultät für Mathematik, Naturwissenschaften und Informatik, Reihe Mathematik, M-05/1997 (1997). - Z. Grudzień and D. Szynal, Characterizations of continuous distributions via moments of record values, J. Appl. Statist. Sci. 9 (2000), 93-104.
- G. D. Lin, Characterizations of continuous distributions via expected values of two functions of order statistics, Sankhyā Ser. A 52 (1990), 84-90.
- K. Morris and D. Szynal, A goodness-of-fit test for the uniform distribution based on a characterization, in: XX Internat. Sympos. on Stability Problems for Stochastic Models (Lublin-Nałęczów, 1999), Abstracts, p. 119, submitted to J. Math. Sci.
- P. Pawlas and D. Szynal, Relations for single and product moments of
-th record values from exponential and Gumbel distributions, J. Appl. Statist. Sci. 7 (1998), 53-62. - P. Pawlas and D. Szynal, Recurrence relations for single and product moments of
-th record values from Weibull distributions, and a characterization, ibid. 10 (2000), 17-26. - Y. H. Too and G. D. Lin, Characterizations of uniform and exponential distributions, Statist. Probab. Lett. 7 (1989), 357-359.
- S. S. Wilks, Mathematical Statistics, Wiley, New York, 1962.