ArticleOriginal scientific text
Title
Radially symmetric solutions of the Poisson-Boltzmann equation with a given energy
Authors 1, 2
Affiliations
- Institute of Mathematics, Technical University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland
- Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Abstract
We consider the following problem: where Φ: Ω ⊂ → ℝ is an unknown function, Θ is an unknown constant and M, E are given parameters.
Keywords
nonlinear elliptic problem, Poisson-Boltzmann equation
Bibliography
- C. Bandle, Isoperimetric Inequalities and Applications, Monographs Stud. Math. 7, Pitman, New York, 1980.
- P. Biler, A. Krzywicki and T. Nadzieja, Self-interaction of Brownian particles coupled with thermodynamic processes, Rep. Math. Phys. 42 (1998), 359-372.
- Ya. I. Frenkel', Statistical Physics, Izdat. Akad. Nauk SSSR, Moscow, 1948 (in Russian).
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Grundlehren Math. Wiss. 224, Berlin, 2nd ed., 1983.
- M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), 303-342.
- A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Appl. Math. (Warsaw) 21 (1991), 365-272.
- C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
- R. F. Streater, A gas of Brownian particles in stochastic dynamics, J. Statist. Phys. 88 (1997), 447-469.