ArticleOriginal scientific text

Title

Radially symmetric solutions of the Poisson-Boltzmann equation with a given energy

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Technical University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland
  2. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

We consider the following problem: ΔΦ=±{MοverΩe-ΦΘ}e-ΦΘ,E=MΘ{1οver2}Ω|Φ|2,ΦΩ=0, where Φ: Ω ⊂ n → ℝ is an unknown function, Θ is an unknown constant and M, E are given parameters.

Keywords

nonlinear elliptic problem, Poisson-Boltzmann equation

Bibliography

  1. C. Bandle, Isoperimetric Inequalities and Applications, Monographs Stud. Math. 7, Pitman, New York, 1980.
  2. P. Biler, A. Krzywicki and T. Nadzieja, Self-interaction of Brownian particles coupled with thermodynamic processes, Rep. Math. Phys. 42 (1998), 359-372.
  3. Ya. I. Frenkel', Statistical Physics, Izdat. Akad. Nauk SSSR, Moscow, 1948 (in Russian).
  4. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Grundlehren Math. Wiss. 224, Berlin, 2nd ed., 1983.
  5. M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), 303-342.
  6. A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Appl. Math. (Warsaw) 21 (1991), 365-272.
  7. C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
  8. R. F. Streater, A gas of Brownian particles in stochastic dynamics, J. Statist. Phys. 88 (1997), 447-469.
Pages:
465-473
Main language of publication
English
Received
2000-02-03
Accepted
2000-04-14
Published
2000
Exact and natural sciences