ArticleOriginal scientific text

Title

Convergence rates of orthogonal series regression estimators

Authors 1

Affiliations

  1. Department of Survey Organization, Central Statistical Office, Al. Niepodległości 208, 00-925 Warszawa, Poland

Abstract

General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x)=E(Y | X = x) are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Y_i,X_i), i=1,...,n, where XiAd have marginal distribution with density ϱL1(A) and Var( Y | X = x) is bounded on A. Convergence rates of the errors EX(f(X)-wf^N(X))2 and Vertf-wf^NVert for the estimator wf^N(x)=k=1Nwc^kek(x), constructed using an orthonormal system ek, k=1,2,..., in L2(A) are obtained.

Keywords

orthonormal system, nonparametric series regression, least squares method, convergence rate

Bibliography

  1. L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence, J. Bernoulli Soc. 4 (1998), 329-375.
  2. D. D. Cox, Approximation of least squares regression on nested subspaces, Ann. Statist. 16 (1988), 713-732.
  3. L. Györfi and H. Walk, On the strong universal consistency of a series type regression estimate, Math. Methods Statist. 5 (1996), 332-342.
  4. J. Z. Huang, Projection estimation in multiple regression with application to functional ANOVA models, Ann. Statist. 26 (1998), 242-272.
  5. G. G. Lorentz, Approximation of Functions, Holt, Reinehart & Winston, New York, 1966.
  6. G. Lugosi and K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory IT-41 (3) (1995), 677-687.
  7. P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10 (1999), 51-80.
  8. W. Popiński, On least squares estimation of Fourier coefficients, and of the regression function, Appl. Math. (Warsaw) 22 (1993), 91-102.
  9. W. Popiński, Consistency of trigonometric and polynomial regression estimators, ibid. 25 (1998), 73-83.
  10. W. Popiński, A note on orthogonal series regression function estimators, ibid. 26 (1999), 281-291.
  11. E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358.
  12. C. J. Stone, Optimal global rates of convergence for nonparametric regression, Ann. Statist. 10 (1982), 1040-1053.
  13. G. Viennet, Least-square estimation for regression on random design for absolutely regular observations, Statist. Probab. Lett. 43 (1999), 13-23.
Pages:
445-454
Main language of publication
English
Received
1999-12-23
Accepted
2000-07-31
Published
2000
Exact and natural sciences