ArticleOriginal scientific text

Title

Orthogonal series regression estimators for an irregularly spaced design

Authors 1

Affiliations

  1. Department of Standards, Central Statistical Office, Al. Niepodległości 208, 00-925 Warszawa, Poland

Abstract

Nonparametric orthogonal series regression function estimation is investigated in the case of a fixed point design where the observation points are irregularly spaced in a finite interval [a,b]i ⊂ ℝ. Convergence rates for the integrated mean-square error and pointwise mean-square error are obtained in the case of estimators constructed using the Legendre polynomials and Haar functions for regression functions satisfying the Lipschitz condition.

Keywords

convergence rates, nonparametric regression, orthogonal series estimator

Bibliography

  1. T. T. Cai and L. D. Brown, Wavelet estimation for samples with random uniform design, Statist. Probab. Lett. 42 (1999), 313-321.
  2. J. Engel, A simple wavelet approach to nonparametric regression from recursive partitioning schemes, J. Multivariate Anal. 49 (1994), 242-254.
  3. R. L. Eubank, J. D. Hart and P. Speckman, Trigonometric series regression estimators with an application to partially linear models, ibid. 32 (1990), 70-83.
  4. T. Gasser and H. G. Müller, Kernel estimation of regression functions, in: Smoothing Techniques for Curve Estimation, T. Gasser and M. Rosenblatt (eds.), Lecture Notes in Math. 757, Springer, Heidelberg, 1979, 23-68.
  5. G. V. Milovanović, D. S. Mitrinović and T. M. Rassias, Topics on Polynomials: Extremal Problems, Inequalities, Zeros, World Sci., Singapore, 1994.
  6. I. Novikov and E. Semenov, Haar Series and Linear Operators, Math. Appl. 367, Kluwer, Dordrecht, 1997.
  7. E. Rafajłowicz, Nonparametric orthogonal series estimators of regression: a class attaining the optimal convergence rate in L2, Statist. Probab. Lett. 5 (1987), 219-224.
  8. E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358.
  9. L. Rutkowski, Orthogonal series estimates of a regression function with application in system identification, in: W. Grossmann et al. (eds.), Probability and Statistical Inference, Reidel, 1982, 343-347.
  10. G. Sansone, Orthogonal Functions, Interscience, New York, 1959.
  11. I. I. Sharapudinov, On convergence of least-squares estimators, Mat. Zametki 53 (1993), 131-143 (in Russian).
  12. P. K. Suetin, Classical Orthogonal Polynomials, Nauka, Moscow, 1976 (in Russian).
Pages:
309-318
Main language of publication
English
Received
1999-05-27
Accepted
2000-01-05
Published
2000
Exact and natural sciences