ArticleOriginal scientific text
Title
Minimum distance estimator for a hyperbolic stochastic partial differentialequation
Authors 1, 1
Affiliations
- Université de Cocody, UFR de Mathématiques et Informatique, Equipe de Probabilités et Statistique, 22 BP 582 Abidjan 22, Côte d'Ivoire
Abstract
We study a minimum distance estimator in -norm for a class ofnonlinear hyperbolic stochastic partial differential equations, driven by atwo-parameter white noise. The consistency and asymptotic normality of thisestimator are established under some regularity conditions on thecoefficients. Our results are applied to the two-parameterOrnstein-Uhlenbeck process.
Keywords
random fields, stochastic partial differential equations, small noise, minimum distance estimator
Bibliography
- H. Dietz and Y. Kutoyants (1992), A minimum-distanceestimator for diffusion processes with ergodic properties, Tech. Report 11, Inst. Appl. Analysis and Stochastics,Berlin.
- H. Dietz and Y. Kutoyants (1997), A class of minimum-distanceestimators for diffusion processes with ergodic properties, Statistics and Decisions 15, 211-217.
- M. Dozzi (1989), Stochastic Processes with a Multidimensional Parameter, Longman Sci. Tech.
- M. Farré and D. Nualart (1993), Nonlinear stochastic integral equations in the plane, Stochastic Process. Appl. 46, 219-239.
- X. Guyon and B. Prum (1981), Semimartingales à deux indices, Ph.D. Thesis, Univ. de Paris VI.
- S. Hénaff (1995), On minimum distance estimate of theparameter of the Ornstein-Uhlenbeck process, preprint, Univ. of Angers.
- H. Korezlioglu, G. Mazziotto and J. Szpirglas (1983), Nonlinear filtering equations for two parameter semimartingales, Stochastic Process. Appl. 15, 239-269.
- Y. Kutoyants (1994), Identification of Dynamical Systems with Small Noise, Kluwer, Dordrecht.
- Y. Kutoyants and O. Lessi (1995), Minimum distance estimation for diffusion random fields, Publ. Inst. Statist. Univ. Paris 29, fasc. 3, 3-20.
- Y. Kutoyants, A. Nercessian and P. Pilibossian (1994), On limit distribution of the minimum sup norm estimate of the parameter ofthe Ornstein-Uhlenbeck process, Romanian J. Pure Appl. Math. 39, 119-139.
- Y. Kutoyants and P. Pilibossian (1994), On minimum
estimate of the parameter of the Ornstein-Uhlenbeck process, Statist. Probab. Lett. 20, 117-123. - J. Norris (1995), Twisted sheets, J. Funct. Anal. 132, 273-334.
- C. Rovira and M. Sanz-Solé (1995), A nonlinear hyperbolic SPDE: Aproximations and support, in: London Math. Soc. Lecture Note Ser. 216, Cambridge Univ. Press, 241-261.
- C. Rovira and M. Sanz-Solé (1996), The law of thesolution to a nonlinear hyperbolic SPDE, J. Theoret. Probab. 9, 863-901.