ArticleOriginal scientific text

Title

Minimum distance estimator for a hyperbolic stochastic partial differentialequation

Authors 1, 1

Affiliations

  1. Université de Cocody, UFR de Mathématiques et Informatique, Equipe de Probabilités et Statistique, 22 BP 582 Abidjan 22, Côte d'Ivoire

Abstract

We study a minimum distance estimator in L2-norm for a class ofnonlinear hyperbolic stochastic partial differential equations, driven by atwo-parameter white noise. The consistency and asymptotic normality of thisestimator are established under some regularity conditions on thecoefficients. Our results are applied to the two-parameterOrnstein-Uhlenbeck process.

Keywords

random fields, stochastic partial differential equations, small noise, minimum distance estimator

Bibliography

  1. H. Dietz and Y. Kutoyants (1992), A minimum-distanceestimator for diffusion processes with ergodic properties, Tech. Report 11, Inst. Appl. Analysis and Stochastics,Berlin.
  2. H. Dietz and Y. Kutoyants (1997), A class of minimum-distanceestimators for diffusion processes with ergodic properties, Statistics and Decisions 15, 211-217.
  3. M. Dozzi (1989), Stochastic Processes with a Multidimensional Parameter, Longman Sci. Tech.
  4. M. Farré and D. Nualart (1993), Nonlinear stochastic integral equations in the plane, Stochastic Process. Appl. 46, 219-239.
  5. X. Guyon and B. Prum (1981), Semimartingales à deux indices, Ph.D. Thesis, Univ. de Paris VI.
  6. S. Hénaff (1995), On minimum distance estimate of theparameter of the Ornstein-Uhlenbeck process, preprint, Univ. of Angers.
  7. H. Korezlioglu, G. Mazziotto and J. Szpirglas (1983), Nonlinear filtering equations for two parameter semimartingales, Stochastic Process. Appl. 15, 239-269.
  8. Y. Kutoyants (1994), Identification of Dynamical Systems with Small Noise, Kluwer, Dordrecht.
  9. Y. Kutoyants and O. Lessi (1995), Minimum distance estimation for diffusion random fields, Publ. Inst. Statist. Univ. Paris 29, fasc. 3, 3-20.
  10. Y. Kutoyants, A. Nercessian and P. Pilibossian (1994), On limit distribution of the minimum sup norm estimate of the parameter ofthe Ornstein-Uhlenbeck process, Romanian J. Pure Appl. Math. 39, 119-139.
  11. Y. Kutoyants and P. Pilibossian (1994), On minimum L1 estimate of the parameter of the Ornstein-Uhlenbeck process, Statist. Probab. Lett. 20, 117-123.
  12. J. Norris (1995), Twisted sheets, J. Funct. Anal. 132, 273-334.
  13. C. Rovira and M. Sanz-Solé (1995), A nonlinear hyperbolic SPDE: Aproximations and support, in: London Math. Soc. Lecture Note Ser. 216, Cambridge Univ. Press, 241-261.
  14. C. Rovira and M. Sanz-Solé (1996), The law of thesolution to a nonlinear hyperbolic SPDE, J. Theoret. Probab. 9, 863-901.
Pages:
225-238
Main language of publication
English
Received
1998-08-17
Accepted
1999-06-10
Published
2000
Exact and natural sciences