ArticleOriginal scientific text

Title

Linearization of Arbitrary products of classical orthogonal polynomials

Authors 1, 2, 3

Affiliations

  1. Unité de Recherche en Physique Théorique (URPT), Institut de Mathématique et de Sciences Physiques (IMSP), Université Nationale du Benin, BP 613 Porto-Novo, Benin
  2. UFR de Mathématique, Université des Sciences et Technologies, Lille I, F-59655 Villeneuve d'Ascq, France
  3. Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium

Abstract

A procedure is proposed in order to expand w=N_{j=1}Pij(x)=M_{k=0}LkPk(x) where Pi(x) belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) (M=N_{j=1}ij). We first derive a linear differential equation of order 2N satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients Lk. We develop in detail the two cases [Pi(x)]N, Pi(x)Pj(x)Pk(x) and give the recurrencerelation in some cases (N=3,4), when the polynomials Pi(x)are monic Hermite orthogonal polynomials.

Keywords

classical orthogonal polynomials, Hermite orthogonal polynomials, linearization coefficients, recurrence relations, differential equations

Bibliography

  1. R. Askey, Orthogonal Polynomials and SpecialFunctions, Regional Conf. Ser. Appl. Math. 21, SIAM, 1975, 39-46.
  2. S. Belmehdi, S. Lewanowicz and A. Ronveaux, Linearizationof product of orthogonal polynomials of a discrete variable, Appl. Math. (Warsaw) 24 (1997), 445-455.
  3. T. S. Chihara, An Introduction toOrthogonal Polynomials, Gordon and Breach, New York, 1978.
  4. E. Feldheim, Quelques nouvelles relations pour les polynômes d'Hermite, J. London Math. Soc. 13 (1938), 22-29.
  5. E. Godoy, I. Area, A. Ronveaux and A. Zarzo, Minimalrecurrence relations for connection coefficients between classical orthogonalpolynomials: Continuous case, J. Comput. Appl. Math. 84 (1997), 257-275.
  6. E. W. Hobson, The Theory of Spherical andEllipsoidal Harmonics, Chelsea, New York, 1965.
  7. R. Hylleraas, Linearization of products ofJacobi polynomials, Math. Scand. 10 (1962), 189-200.
  8. R. Lasser, Linearization of the product ofassociated Legendre polynomials, SIAM J. Math. Anal. 14 (1983), 403-408.
  9. S. Lewanowicz, Second-order recurrence relationfor the linearization coefficients of the classical polynomials, J.Comput. Appl. Math. 69 (1994), 159-170.
  10. S. Lewanowicz and A. Ronveaux, Linearization of powers of classicalorthogonal polynomial of a discrete variable, J. Math. Phys. Sci. (Madras), in print.
  11. A. Nikiforov et V. Ouvarov,
  12. Élémentsde la Théorie des Fonctions Spéciales, Mir, Moscow, 1976.
  13. A. Ronveaux, Orthogonal polynomials: Connection andlinearization coefficients, in: Proc. International Workshop onOrthogonal Polynomials in Mathematical Physics in honour of Professor André Ronveaux (Leganes, Universidad Carlos III, Madrid, 1996), M. Alfaro et al. (eds.), 131-142.
  14. A. Ronveaux, Some 4th order differentialequations related to classical orthogonal polynomials, in: Sobre polynomios orthogonales y applicationes(Vigo, 1988), A. Cachafeiro and E. Godoy (eds.), Esc. Tec. Super. Ing. Ind. Vigo, 1989, 159-169.
  15. A. Ronveaux, S. Belmehdi, E. Godoy and A. Zarzo, Recurrence relations approach for connection coefficients. Applications toclassical discrete orthogonal polynomials, in: CRM Proc. Lecture Notes 9, Amer. Math. Soc., 1996, 319-335.
  16. A. Ronveaux, E. Godoy and A. Zarzo, Recurrencerelations for connection coefficients between two families of orthogonalpolynomials, J. Comput. Appl. Math. 62 (1995), 67-73.
  17. A. Ronveaux, M. N. Hounkonnou and S. Belmehdi, Recurrence relations between linearization coefficients oforthogonal polynomials, Report Laboratoire de PhysiqueMathématique FUNDP, Namur, 1993.
  18. A. Ronveaux, M. N. Hounkonnou and S. Belmehdi, Generalized linearization problems, J. Phys. A. 28 (1995), 4423-4430.
  19. M. E. Rose, Elementary Theory of AngularMomentum, Wiley, New York, 1957.
  20. I. A. Šapkrarev, Über lineare Differentialgleichungenmit der Eigenschaft dass k-te Potenzen der Integrale einer linearenDifferentiagleichung zweiter Ordnung ihre Integrale sind, Mat. Vesnik(4) 19 (1967), 67-70.
  21. R. Szwarc, Linearization and connectioncoefficients of orthogonal polynomials, Monatsh. Math. 113 (1992), 319-29.
  22. A. Zarzo, I. Area, E. Godoy and A. Ronveaux, Resultsfor some inversion problems for classical continuous and discrete orthogonalpolynomials, J. Phys. A. 30 (1997), L35-L40.
Pages:
187-196
Main language of publication
English
Received
1998-09-30
Accepted
1999-05-18
Published
2000
Exact and natural sciences