ArticleOriginal scientific text
Title
Linearization of Arbitrary products of classical orthogonal polynomials
Authors 1, 2, 3
Affiliations
- Unité de Recherche en Physique Théorique (URPT), Institut de Mathématique et de Sciences Physiques (IMSP), Université Nationale du Benin, BP 613 Porto-Novo, Benin
- UFR de Mathématique, Université des Sciences et Technologies, Lille I, F-59655 Villeneuve d'Ascq, France
- Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium
Abstract
A procedure is proposed in order to expand where belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) ( ). We first derive a linear differential equation of order satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients . We develop in detail the two cases , and give the recurrencerelation in some cases (N=3,4), when the polynomials are monic Hermite orthogonal polynomials.
Keywords
classical orthogonal polynomials, Hermite orthogonal polynomials, linearization coefficients, recurrence relations, differential equations
Bibliography
- R. Askey, Orthogonal Polynomials and SpecialFunctions, Regional Conf. Ser. Appl. Math. 21, SIAM, 1975, 39-46.
- S. Belmehdi, S. Lewanowicz and A. Ronveaux, Linearizationof product of orthogonal polynomials of a discrete variable, Appl. Math. (Warsaw) 24 (1997), 445-455.
- T. S. Chihara, An Introduction toOrthogonal Polynomials, Gordon and Breach, New York, 1978.
- E. Feldheim, Quelques nouvelles relations pour les polynômes d'Hermite, J. London Math. Soc. 13 (1938), 22-29.
- E. Godoy, I. Area, A. Ronveaux and A. Zarzo, Minimalrecurrence relations for connection coefficients between classical orthogonalpolynomials: Continuous case, J. Comput. Appl. Math. 84 (1997), 257-275.
- E. W. Hobson, The Theory of Spherical andEllipsoidal Harmonics, Chelsea, New York, 1965.
- R. Hylleraas, Linearization of products ofJacobi polynomials, Math. Scand. 10 (1962), 189-200.
- R. Lasser, Linearization of the product ofassociated Legendre polynomials, SIAM J. Math. Anal. 14 (1983), 403-408.
- S. Lewanowicz, Second-order recurrence relationfor the linearization coefficients of the classical polynomials, J.Comput. Appl. Math. 69 (1994), 159-170.
- S. Lewanowicz and A. Ronveaux, Linearization of powers of classicalorthogonal polynomial of a discrete variable, J. Math. Phys. Sci. (Madras), in print.
- A. Nikiforov et V. Ouvarov,
- Élémentsde la Théorie des Fonctions Spéciales, Mir, Moscow, 1976.
- A. Ronveaux, Orthogonal polynomials: Connection andlinearization coefficients, in: Proc. International Workshop onOrthogonal Polynomials in Mathematical Physics in honour of Professor André Ronveaux (Leganes, Universidad Carlos III, Madrid, 1996), M. Alfaro et al. (eds.), 131-142.
- A. Ronveaux, Some 4th order differentialequations related to classical orthogonal polynomials, in: Sobre polynomios orthogonales y applicationes(Vigo, 1988), A. Cachafeiro and E. Godoy (eds.), Esc. Tec. Super. Ing. Ind. Vigo, 1989, 159-169.
- A. Ronveaux, S. Belmehdi, E. Godoy and A. Zarzo, Recurrence relations approach for connection coefficients. Applications toclassical discrete orthogonal polynomials, in: CRM Proc. Lecture Notes 9, Amer. Math. Soc., 1996, 319-335.
- A. Ronveaux, E. Godoy and A. Zarzo, Recurrencerelations for connection coefficients between two families of orthogonalpolynomials, J. Comput. Appl. Math. 62 (1995), 67-73.
- A. Ronveaux, M. N. Hounkonnou and S. Belmehdi, Recurrence relations between linearization coefficients oforthogonal polynomials, Report Laboratoire de PhysiqueMathématique FUNDP, Namur, 1993.
- A. Ronveaux, M. N. Hounkonnou and S. Belmehdi, Generalized linearization problems, J. Phys. A. 28 (1995), 4423-4430.
- M. E. Rose, Elementary Theory of AngularMomentum, Wiley, New York, 1957.
- I. A. Šapkrarev, Über lineare Differentialgleichungenmit der Eigenschaft dass k-te Potenzen der Integrale einer linearenDifferentiagleichung zweiter Ordnung ihre Integrale sind, Mat. Vesnik(4) 19 (1967), 67-70.
- R. Szwarc, Linearization and connectioncoefficients of orthogonal polynomials, Monatsh. Math. 113 (1992), 319-29.
- A. Zarzo, I. Area, E. Godoy and A. Ronveaux, Resultsfor some inversion problems for classical continuous and discrete orthogonalpolynomials, J. Phys. A. 30 (1997), L35-L40.