ArticleOriginal scientific text

Title

A conjugate gradient method with quasi-Newton approximation

Authors 1

Affiliations

  1. ISIMA-LIMOS, Université Clermont-Ferrand II, Campus des Cézeaux, BP 125, F-63173 Aubière Cedex, France

Abstract

The conjugate gradient method of Liu and Storey is an efficient minimization algorithm which uses second derivatives information, without saving matrices, by finite difference approximation. It is shown that the finite difference scheme can be removed by using a quasi-Newton approximation for computing a search direction, without loss of convergence. A conjugate gradient method based on BFGS approximation is proposed and compared with existing methods of the same class.

Keywords

Newton and quasi-Newton methods, unconstrained high-dimensional optimization, conjugate gradient methods

Bibliography

  1. C. G. Broyden, The convergence of a class of double-rank minimization algorithms, J. Inst. Math. Appl. 6 (1970), 60-76.
  2. J. E. Dennis and J. J. Moré, Quasi-Newton methods, motivations and theory, SIAM Rev. 19 (1977), 46-89.
  3. R. Fletcher and C. M. Reeves, Function minimization by conjugate gradient, Computer J. 7 (1964), 143-154.
  4. J. C. Gilbert and C. Lemarechal, The modules M1QN2, N1QN2, M1QN3 and N1QN3, INRIA, technical report, 1989.
  5. J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim. 2 (1992), 21-42.
  6. M. Hestenes and E. Stiefel, Methods of conjugate gradient for solving linear systems, J. Res. Nat. Bureau Standards B48 (1952), 409-436.
  7. Y. F. Hu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 2: Implementation, J. Optim. Theory Appl. 69 (1991), 139-152.
  8. Y. F. Hu and C. Storey, Preconditioned low-order Newton methods, ibid. 79 (1993), 311-331.
  9. Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory, ibid. 69 (1991), 129-137.
  10. J. L. Nazareth, The method of successive affine reduction for nonlinear minimization, Math. Programming 35 (1985), 97-109.
  11. J. L. Nazareth, Conjugate gradient methods less dependent on conjugacy, SIAM Rev. 28 (1986), 501-511.
  12. E. Polak and G. Ribière, Note sur la convergence des méthodes de directions conjuguées, RAIRO Rech. Opér. 16 (1969), 35-43.
Pages:
153-165
Main language of publication
English
Received
1998-01-29
Accepted
1999-07-26
Published
2000
Exact and natural sciences